

UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY

(A constituent Autonomous Institute and Recognized by UGC under Section 12(B) and 2(f))

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Established by the state Legislature Act XII of 1956

('A+' Grade, NAAC Accredited)

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (w. e. f. 2021-22)

Scheme and Syllabai of Examination

Program Outcomes

S.No.	Program Outcome	Attributes				
PO-01	Acquire technical competence, comprehensive knowledge and	Scholarship of				
	understanding the methodologies and technologies associated with land, air & naval defence systems. Apply knowledge to identify, formulate and	Knowledge				
	analyse complex engineering problems					
PO-02	Having an ability to apply knowledge of science, mathematics, engineering & technology for development of defence technologies.	Critical Thinking				
PO-03	0,					
PO-04	Acquire the skills for uses of contemporary techniques, resources and modern engineering and IT tools	Usages of Modern Techniques				
PO-05	An ability to identify, investigate, understand and analyse complex problems, apply creativity, carry out research /investigation and development work to solve practical problems related to defence technological issues	Design, Development & Solutions				
PO-06	Ability to communicate effectively in both oral and written contexts in the form of technical papers, project reports, design documents and seminar presentations	Communication				
PO-07	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Individual &Team Work				

Semester -I

UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY

(A constituent Autonomous Institute and Recognized by UGC under Section 12(B) and 2(f))

KURUKSHETRA UNIVERSITY, KURUKSHETRA

Established by the state Legislature Act XII of 1956

('A+' Grade, NAAC Accredited)
MASTER OF TECHNOLOGY

IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22)

SEMESTER-1

Sr. No.	Course Code	SUBJECT	L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-01-01	Systems and warfare Platforms	4	-	-	4	40	60	4	3
2	DT-01-02	Warfare Simulations & Strategies	4	-	-	4	40	60	4	3
3	DT-01-03	Advanced Engineering Mathematics	4	-	-	4	40	60	4	3
4	DT-01-L01	Systems and warfare Platforms Lab	-	-	4	4	40	60	2	3
5	DT-01-L02	Warfare Simulations & Strategies Lab	-	•	4	4	40	60	2	3
6	*	Elective-I	3	-	-	3	40	60	3	3
7	**	Elective-II	3	-	-	3	40	60	3	3
8		Seminar	-	-	2	2	100	-	1	3
		Total	18	•	10	28	380	420	23	
			•		i i		80	0		

	*LIST OF ELECTIVES - I for 1st Semester						
Sr. No.	Sr. No. Course Code Course of Study						
1.	DT-EL1-01	Rockets & Missiles Fundamentals					
2.	DT-EL1-02	Advanced Thermal Engineering					
3.	DT-EL1-03	Numerical methods for science & engineering					
4.	DT-EL1-04	Communication Technology					
5.	DT-EL1-05	Advanced Mechanical Engineering					

	**LIST OF ELECTIVES - II for 1st Semester						
Sr. No.	Course Code	Course of Study					
1.	DT-EL2-01	Autonomy and Navigation Technology					
2.	DT-EL2-02	Optimization theory & applications					
3.	DT-EL2-03	Military Electronics System Engineering					
4.	DT-EL2-04	System Engineering & Analysis					

Students are expected to select the Elective courses of their choice, provided that at least a group of 7 students should opt for the similar elective course

Semester -II

SEMESTER-II MASTER OF TECHNOLOGY

IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22) SPECIALIZATION: COMBAT VEHICLE ENGINEERING

Sr. No.	Course Code	Subject		T	P	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-CVE-01	Combat Vehicle Dynamics		-	-	4	40	60	4	3
2	DT-CVE-02	Combat System Engineering	4	-	-	4	40	60	4	3
3	DT-CVE-03	Test & Evaluation of Weapon System	4	-	-	4	40	60	4	3
4	DT-CVE-L01	Combat Vehicle Dynamics Lab	-	ı	2	2	40	60	2	3
5	DT-CVE-L02	CVE-L02 Combat System Engineering Lab	-		2	2	40	60	2	3
6	*	Elective-III	3	-	-	3	40	60	3	3
7	**	Elective-IV	3	ı	ı	3	40	60	3	3
8		Seminar	-	-	1	1	100	-	1	3
		Total	18		5	23	380	420	23	
							80	0		

SEMESTER-II MASTER OF TECHNOLOGY

DEFENCE TECHNOLOGY (w. e. f. 2021-22) SPECIALIZATION: AEROSPACE TECHNOLOGY

Sr. No.	Course Code	Subject	L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-AT-01	Aerospace System Configuration, Design & Simulation	4	-	-	4	40	60	4	3
2	DT-AT-02	Guidance & control	4	-	-	4	40	60	4	3
3	DT-AT-03	Aerospace Propulsion	4	-	-	4	40	60	4	3
4	DT-AT-L01	Aerospace System Configuration, Design & Simulation Lab	-	ı	2	2	40	60	2	2
5	DT-AT-L02	Guidance & control Lab	-	-	2	2	40	60	2	2
6		Elective- III	3	-	-	3	40	60	3	3
7		Elective -IV	3	-	-	3	40	60	3	3
8		Seminar	-	-	1	1	100	-	1	3
	Total 18 5 23								23	
							80	0		

<u>SEMESTER-II</u> MASTER OF TECHNOLOGY

IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22) SPECIALIZATION: NAVAL TECHNOLOGY

Sr. No.	Course Code	Subject	L	T	P	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-NT-01	Naval combat system engineering		-	-	4	40	60	4	3
2	DT-NT-02	Guidance, Navigation, and Control of Marine Systems		i	-	4	40	60	4	3
3	DT-NT-03	Marine Propulsion	4	ı	ı	4	40	60	4	3
4	DT-NT-L01	Naval combat system engineering Lab		ı	2	2	40	60	2	2
5	DT-NT-L02	Guidance, Navigation, and Control of Marine Systems Lab	-	-	2	2	40	60	2	2
6	*	Elective-III	3	-	-	3	40	60	3	3
7	**	Elective-IV	3	-	-	3	40	60	3	3
8	Seminar		-	-	1	1	100	-	1	3
		Total	18		5	23	380	420	23	
							80	0		

<u>SEMESTER-II</u> MASTER OF TECHNOLOGY

IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22) SPECIALIZATION: COMMUNICATION SYSTEMS & SENSORS

Sr. No.	Course Code	Subject	L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-CSS-01	Radar Technologies		-	-	4	40	60	4	3
2	DT-CSS-02	Digital & satellite Communication and Navigation from Space	4	-	-	4	40	60	4	3
3	DT-CSS-03	Tactical battlefield Communication & Electronic Warfare	4	-	-	4	40	60	4	3
4	DT-CSS-L01	Radar Technologies Lab	-	-	4	4	40	60	2	3
5	DT-CSS-L02	Digital & satellite Communication and Navigation from Space Lab	-	-	4	4	40	60	2	3
6	*	Elective-III	3	-	-	3	40	60	3	3
7	**	Elective-IV	3	-	-	3	40	60	3	3
8		Seminar	-	-	2	2	100	-	1	3
		Total	18		10	28	380	420	23	
							80	0		

SEMESTER-II MASTER OF TECHNOLOGY

IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22) SPECIALIZATION: DIRECTED ENERGY TECHNOLOGY

Sr. No.	Course Code	Subject	L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-DET-01	Directed Energy Sources (Lasers, Microwave)		-	-	4	40	60	4	3
2	DT-DET-02	Beam Control Technology, Target acquisition, Beam Pointing & Tracking	4	ı	-	4	40	60	4	3
3	DT-DET-03	Directed Energy Weapons (DEW) System Engineering	4	i	-	4	40	60	4	3
4	DT-DET-L01	Directed Energy Sources (Lasers, Microwave) Lab	-	i	4	4	40	60	2	3
5	DT-DET-L02	Beam Control Technology, Target acquisition, Beam Pointing & Tracking Lab	-	ı	4	4	40	60	2	3
6	*	Elective-III	3	-	-	3	40	60	3	3
7	**	Elective-IV	3	-	-	3	40	60	3	3
8		Seminar	-	-	2	2	100	-	1	3
		Total	18	-	10	28	380	420	23	
							80	0		

<u>SEMESTER-II</u> MASTER OF TECHNOLOGY

IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22) SPECIALIZATION: HIGH ENERGY MATERIALS TECHNOLOGY

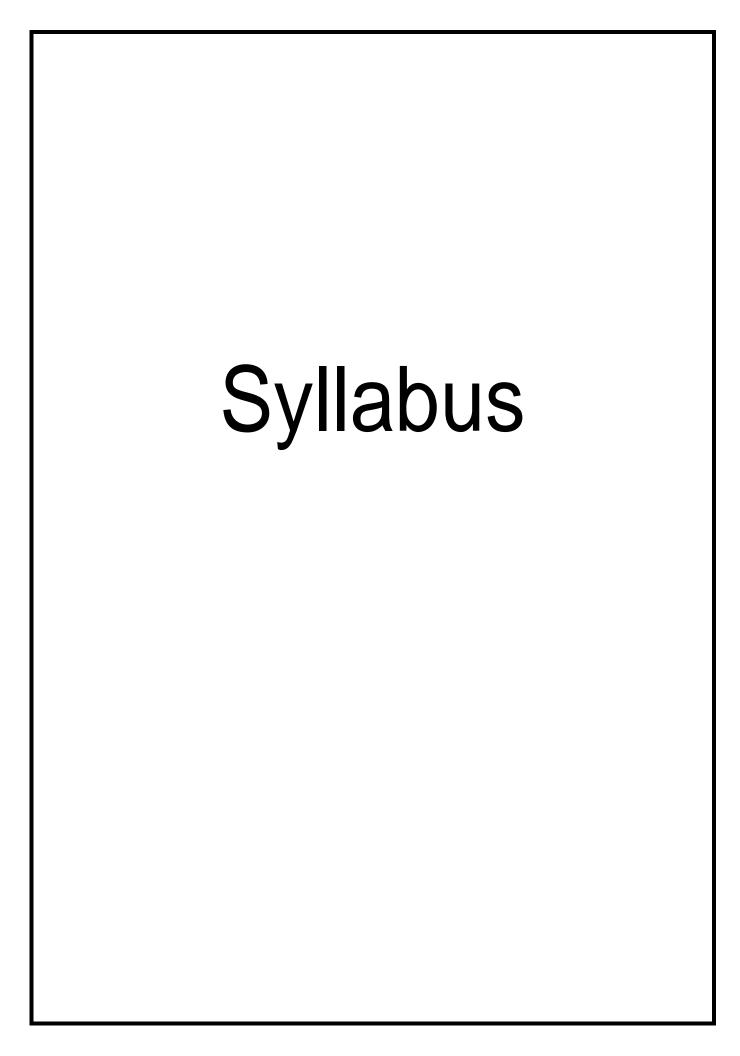
Sr. No.	Course Code	Subject	L	T	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-HEM-01	High Energy Materials Modeling & Simulation	4	-	-	4	40	60	4	3
2	DT-HEM-02	Munitions and Target Response	4	-	-	4	40	60	4	3
3	DT-HEM-03	Manufacturing and Materials Properties of Explosives	4	-	-	4	40	60	4	3
4	DT-HEM-L01	High Energy Materials Modeling & Simulation Lab		-	2	2	40	60	2	3
5	DT-HEM-L02	Munitions and Target Response Lab	-	-	2	2	40	60	2	3
6	*	Elective-III	3	-	-	3	40	60	3	3
7	**	Elective-IV	3	ı	-	3	40	60	3	3
8		Seminar	-	ı	1	1	100	-	1	3
		Total	18	_	5	23	380	420	23	
						•	80	0		

	LIST OF ELECTIVE	S - III (for all Specializations) for 2 nd Semester
Sr. No.	Course Code	Course of Study
1.	DT-EL3-01	Robotics (MSS, MCC)
2.	DT-EL3-02	EMI/EMC in Military Systems
3.	DT-EL3-03	Defence Electro-Optics and Imaging Systems
4.	DT-EL3-04	Structural Dynamics and Aero-elasticity
5.	DT-EL3-05	Safety, Health & Hazard Management
6.	DT-EL3-06	Fundamental of telemetry, telecomm and transponder
7.	DT-EL3-07	Jamming and ECM/ECCM technologies
8.	DT-EL3-08	Software defined Radios
9.	DT-EL3-09	Advanced Lightweight and Composite Structures
10.	DT-EL3-10	Test methodologies for DEW systems (Lasers & Microwave)
11.	DT-EL3-11	Advanced Analytical Techniques / Lab testing
12.	DT-EL3-12	Sonar System Engineering

	** LIST OF ELECTIVES	- IV (for all Specializations) for 2nd Semester
Sr. No.	Course Code	Course of Study
1.	DT-EL4-01	Unmanned Aerial Vehicle Design
2.	DT-EL4-02	Naval Ocean Analysis and Prediction
3.	DT-EL4-03	Modeling & simulation of Laser Matter Interaction
4.	DT-EL4-04	Computational Aerodynamics
5.	DT-EL4-05	Launch Vehicle Design & Analysis
6.	DT-EL4-06	Acquisition, Tracking & Pointing Technology
7.	DT-EL4-07	Data acquisition, tracking & post flight analysis
8.	DT-EL4-08	Air independent propulsion & batteries
9.	DT-EL4-09	Advanced digital modulation technologies & standards
10.	DT-EL4-10	Trajectories modeling & simulation
11.	DT-EL4-11	Sensor Technology

Students are expected to select the Elective courses of their choice, provided that at least a group of 7 students should opt for the similar elective course

Semester -III


SEMESTER-III

Sr. No.	Course Code	Subject	L	T	Р	Total	Minor* Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-PDP-01	Project Dissertation- Phase 1	•	-	20	20	100	00	10	3
2	DT-PDP-01	Seminar/Industrial Training	-	-	8	8	100	00	4	3
		Total	-	-	28	28	200	-	14	
				20	0					

Semester -IV

SEMESTER-IV

Sr. No.	Course Code		L	Т	Р	Total	Minor Test	Major Test	Cr.	Duration of Exam (Hrs.)
1	DT-PDP-02	Project Dissertation- Phase- 2	-	-	40	40	100	200	20	3
			I.		,	Total	100	200	20	
								00		

INSTRUCTIONS FOR PAPER SETTER

- The question paper is to be attempted in THREE Hours.
- Maximum Marks for the paper are 60.
- The syllabus for the course is divided into SIX units.
- The paper will have a total of THIRTEEN questions.
- Question No. 1, which is compulsory, shall be OBJECTIVE Type and have content from the entire syllabus (all SIX Units).

Q. No. 2 & 3	from	Unit I
Q. No. 4 & 5	from	Unit II
Q. No. 6 & 7	from	Unit III
Q. No. 8 & 9	from	Unit IV
Q. No. 10 & 11	from	Unit V
Q. No. 12 & 13	from	Unit VI

- The candidate will attempt a total of SEVEN questions. Q. No. 1 is compulsory and carries 12 marks.
 The candidate shall attempt remaining SIX questions each of 8 marks by selecting only one question from each unit.
- A question may have any number of sections labeled as 1(a), 1(b), 1(c), 1(d), 2(a), 2(b), --. A section may further have any number of subsections labeled as (i), (ii), (iii),
- SPECIAL INSRUCTIONS FOR Q. No. 1 ONLY

Question No. 1, which is compulsory, shall be OBJECTIVE/ short answer type and have content from the entire syllabus with equal weightage of all Six Units.

Emphasis is to be given on the basic concepts, analytical reasoning and understanding of the various topics in the subject. This question may have a number of parts and/or subparts. The short questions could be combination of following types:

- Multiple Choice
- Yes/ No choice
- Fill in Blanks type
- · Short numerical computations
- · Short Definitions
- Matching of Tables

The above-mentioned question types is **only a Guideline**. Examiner could set the question as per the nature of the subject.

Semester -I

DT-01-01		SYSTEMS AND WARFARE PLATFORMS									
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalTimeTestTestTest(Hrs.)									
4	0	0 0 4 60 40 100 3									
Objective	To provide knowledge to the students about various types of military platforms used in air, naval & land warfare. Students will also be apprised for weapon system and self-protection strategies and techniques. Course Outcomes										
CO 1		rill be able to rine and thei		<i>3</i> i	arfare platfo	orm used fo	or Army,				
CO 2	missiles pr	rill be able to ojectiles, mir reapons, anti-	nes/ counter	rmines, lase	rs, undersea	a weapons					

Unit I

Types of platforms: land, sea, air; Lifecycle: concept, design, pre-production, production, operations, support.

Unit II

Ship design fundamentals: buoyancy, stability, ship resistance, survivability; damage control, NBCD, crew numbers, power requirements. Submarine design: buoyancy, stability, hull/tank design, air interdependence

Unit III

Mechanics of flight: fixed and rotary wing, straight and level flight of aircraft, aircraft control and movement, aircraft control surfaces, aerodynamics, power requirements, range; speed, ceiling, survivability, payload

Unit IV

Military vehicle fundamentals: tracked, wheeled, A, B and C vehicles

Unit V

Weapon systems: guns, ordnance, missiles, rockets, bombs, sub- munitions, projectiles, mines/ countermines, lasers, undersea weapons, air-launched weapons, anti-aircraft, anti-personnel, anti-ship, anti-submarine

Unit VI

Self-defence and Protection systems: Armour, smoke, chaff, decoys; Introduction to instrumentation, lab tests and flight trials

- 1. "Light And Heavy Vehicle Technology", by Nunney. Publisher Elsevier.
- 2. "Practical approach to motor vehicle engineering and maintenance", by Bon-nick Allan et. Al. Publisher: Yesdee.
- 3. "Automotive Vibration Control Technology: Fundamentals, Materials, Construction, Simulation, and Applications", by Trelleborg.
- 4. "An Introduction to Weapons Systems", by Yacov Bar-Shlomo. Publisher: Create Space Independent Publishing Platform.
- 5. "Heavy Vehicle Mechanics", by Ian Nicholson. Publisher: McGraw-Hill Education Europe.
- 6. "Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare", by Alastair D. McAulay. Publisher: Wiley-Interscience; 1st edition.
- 7. Literature / books suggested by respective course Lecturers.

Note: The shall be C carries 12	paper will have a tota BJECTIVE Type and h ! Marks .	al of THIRTEEN q ave contents from	<i>uestions.</i> Question the entire sylla	n No. 1, which is o abus (all SIX Units	ompulsory, s). Q. No. 1
The stude SIX quest Marks.	nt will attempt a total or ions by selecting only	f SEVEN questions y one question f	s, including compl From each unit a	ulsory Q. No. 1 and and each question	remaining n carries 8

DT-01-02		WAR	FARE SIMUI	ATIONS &	STRATEGIES	S					
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Test Test									
4	0	0	4	60	40	100	3				
Objective		To provide knowledge to the students about warfare system and affluent them with combat modeling using mathematical modeling.									
		Cours	e Outcomes								
CO 1	Students w	ill be able to	understand	the systems	used in war	fare scena	rio.				
CO 2	Students w	Students will be able to understand combat simulation & modelling.									
CO 3		ill be able to u or representa		he war gam	ing simulati	on & mode	lling and				

Unit I

Introduction to Warfare systems: air, surface, subsurface, littoral, electronic.

Unit II

Military capabilities: air warfare, surface warfare, sub surface warfare, littoral warfare

Unit III

Introduction to the methods used in modeling combat and their application in support of defence decision making and training, Combat simulation

Unit IV

War gaming/interactive simulation, Lanchester's equations, Mathematical models of combat

Unit V

War gaming and combat modeling in practice, manual war gaming

Unit VI

Human factors representation in war gaming and combat modeling

Suggested Books:

- 1. "Defense Modeling, Simulation, and Analysis: Meeting the Challenge". Publisher: National Academies Press (October 22, 2006).
- 2. "Introduction to Electronic Warfare Modeling and Simulation" by David L. Adamy". Publisher: Artech Print on Demand (October 31, 2002).
- 3. "Engineering Principles of Combat Modeling and Distributed Simulation", by Andreas Tolk (Editor), Old Dominion University. Publisher: John Wiley & Sons.
- 4. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-01-03		ADVAI	NCED ENGI	NEERING M	ATHEMATIC	CS					
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalTimeTestTest(Hrs.)									
4	0	0	4	60	40	100	3				
Objective	To provide knowledge to the students of probability theory, algebra, solutions of Differential equations, Transform techniques, special functions & their applications in the areas with defence relevance.										
	Course Outcomes										
CO 1	Students will be able to know the methods for solving differential equations, generating functions.										
CO 2	Laplace Tra	ill be able to ansforms and actions and c	solve proble								
CO 3	Students will be able to demonstrate MATLAB programming for engineering problems.										
CO 4		ill be able to u blems having				natical met	hods for				

Unit I

Elements of Probability and Statistics, components of operations research, Linear Algebra.

Unit II

Ordinary Differential equations, Numerical methods for ODE and P.D.E. Generating functions, recurrence relations

Unit III

Transform Techniques, Fourier series, Fourier Transform, Laplace Transform

Unit IV

Special functions: Power series method, Frobenious method, Legendre equation, Legendre polynomials, Bessel equation, Bessel functions of first kind, Orthogonal property

Unit V

Elements of Ramsey theory, theorems of Burnside and Polya, and balanced incomplete block designs

Unit VI

Application areas with defence relevance range from mathematics to computer science and operations research, applications in probability, game theory, network design, coding theory, and experimental design

- 1. "Advanced engineering mathematics", by Kreyszig. Publisher: Wiley.
- 2. "Advanced engineering mathematics", by Jain/Iyenger. Publisher: Narosa.
- 3. "Advanced engineering mathematics", by Taneja. Publisher: I K international
- 4. "Advanced engineering mathematics", by Alan Jeffery. Publisher: Academic Press.
- 5. "Advanced engineering mathematics", by Peter V. O'Neil. Publisher: Cengage Learning.
- 6. Literature / books suggested by respective course Lecturers.

carries 12 Ma	rks.				
The student wing SIX questions Marks.	ill attempt a total o by selecting onl	f SEVEN questic y one questior	ons, including cor on from each un	npulsory Q. No. 1 it and each que	and remaining stion carries 8

DT-01-L01	SYSTEMS AND WARFARE PLATFORMS LAB									
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
0	0	4	2	60	40	100	3			

List of Experiments

 $Lab\ experiments\ will\ be\ added\ in\ consultation\ with\ DRDO\ labs\ considering\ the\ available\ facilities$

DT-01-L02	WARFARE SIMULATIONS & STRATEGIES LAB									
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time Test Test (Hrs.)								
0	0	4	2	60	40	100	3			

List of Experiments

Lab experiments will be added in consultation with DRDO labs considering the available facilities

Semester 1, Elective-1 **Courses**

DT-EL1-01		ROCI	KETS & MIS	SILES FUND	AMENTALS	;					
Lecture	Tutorial	TutorialPracticalCreditsMajor TestMinor TestTotal (Hrs.)									
3	0	0 0 3 60 40 100 3									
Objective		To provide knowledge to the students about missile system, classification of missiles, aerodynamics of missiles, subsystems and missile trajectory.									
		Course	e Outcomes	•							
CO 1		ill be able to g aspects of m			ssile physics	s as well as	the				
CO 2		Students will be able to understand physics behind guided missiles and aero dynamics of missiles.									
CO 3	Students w used in mis	ill be able to ssiles.	understand	concept of c	characteriza	tion of sub-	-systems				

Unit I

Basics of Missile Physics, Introduction to Guided Missiles, Classification of Missiles

Unit II

Missile Aerodynamic Configurations, Introduction to Missile System, Interrelationship between various Missile Sub-Systems

Unit III

Basic Characteristics of Guided Missile Systems, Missile System Reliability, Range dispersion and CEP Concept

Unit IV

Design, System Layout and integration of Sub-Systems

Unit V

Coordinate Transformation, Transformation Matrices. Two, Three and Six DOF Equations of Motion, Ballistic Missile Trajectory

Unit VI

Effect of Curvature of Earth, Rotation of Earth, Variation of Gravity on Missile Trajectory

Suggested Books:

- 1. "Fundamentals of Guided Missiles", by S. R. Mohan. Publisher: Defence Re-search and Development Organization.
- 2. "Estimation and Prediction of Ballistic Missile Trajectories" by Jeffrey A. Isaacson, David R. Vaughan. Publisher: RAND (29 May 1996)
- 3. "Introduction to Modern Algebra and Matrix Theory", by O. Schreier, E. Sperner, Martin David, Melvin Hausner. Publisher: Dover Publications.
- 4. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL1-02		ADVANCED THERMAL ENGINEERING									
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalTimeTestTest(Hrs.)									
3	0	0	3	60	40	100	3				
Objective	requirements simulation	To provide knowledge to the students for the thermal management requirements / problems of the defence systems and thermal system design & simulation for the various air, land & naval defence systems utilized under different environmental conditions Course Outcomes									
CO 1	Students w design.	ill be able to	understand	thermal des	sign and sim	ulations fo	r system				
CO 2	Students will be able to carry out CFD simulations, design of heat exchangers, refrigeration.										
CO 3		vill be able to defence syste		ot of therma	al managem	ent require	ement &				

Unit I

System thermal design & Analysis, Tools for thermal design and simulation, Heat transfer analysis (conduction, convection & radiation),

Unit II

Computation fluid dynamics (CFD), Thermal Finite Element Analysis

Unit III

Heat Exchangers for: Heat Exchanger Network Design

Unit IV

Refrigeration, Humidifiers, Air Washers and Cooling Towers

Unit V

Thermal management design of defence system (combat vehicles, missiles, aerial vehicles etc.)

Unit VI

Thermal testing, thermal operation, and integration of thermal design into the defence systems

- 1. "Fundamentals of Heat and Mass Transfer", by Incropera and Dewitt. Publication: John Wiley.
- 2. "Convective Heat and Mass Transfer", by W M Kays and M E Crawford. Publisher: McGraw-Hill publishing Company.
- 3. "Thermal Radiation Heat Transfer" by J Siegel and R Howell. Publisher: Elsevier.
- 4. "Manohar Prasad, Refrigeration and Air Conditioning", 3rd Edition, New Age International, 2015.
- 5. "Computational Fluid Dynamics The Basics with Applications", by John D Anderson. Publisher:1st Edition, McGraw Hill, 2012.
- 6. "Thermal System Design and Simulation", by P.L. Dhar, 1st Edition.
- 7. Literature / books suggested by respective course Lecturers.

carries 12 Ma	arks.				
The student w SIX questions Marks .	ill attempt a total of a by selecting only	SEVEN questions, one question fr	including compu com each unit a	lsory Q. No. 1 and nd each questior	remaining n carries 8

DT-EL1-03	N	IUMERICAL I	METHODS F	OR SCIENCI	E AND ENGI	NEERING	
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
3	0	0	3	60	40	100	3
Objective	technology curve fittir	knowledge to solve algoing and optime ding of the g.	ebraic equa nization tech	ations, calcunniques. Th	ilate derivat e course wi	ives and i Il also dev	ntegrals, velop an
		Course	e Outcomes	;			
CO 1		rill be able to pproximate)					find the
CO 2	Students w methods.	vill be able to	fit the data	using inter	polation ted	chnique an	d spline
CO 3		vill be able to ey will be able					

Unit I

Introduction, solution of non-linear equations, solution of linear systems

Unit II

Introduction and polynomial approximation, curve fitting, Numerical applications & intergradations, numerical optimization

Unit III

Matrices and types of linear systems, direct elimination methods, conditioning and stability of solutions

Unit IV

Introduction to Finite Element Analysis (FEA) simulation software, Pre- and Post-Processing, Free mesh and Mapped mesh techniques, Quality checks on nodes and elements, Boundary conditions

Unit V

Introduction to computational fluid engineering, Fundamental equations, Computational Engineering Process

Unit VI

Fluid Simulation for Computer Graphics, Modelling techniques

- 1. "Numerical Methods for Scientific and Engineering Computation", by M. K. Jain and S.R.K. Iyengar. Publisher: New Age International Publishers.
- 2. "Applied Numerical Analysis", by Gerald & Wheatley. Publisher Addison Wesley.
- 3. "Introductory Methods of Numerical Analysis", by, S.S. Sastry. Publisher: PHI Pvt. Ltd., 5th Edition, New Delhi, 2009.
- 4. "Applied Numerical Methods Using MATLAB", by W.Y. Yang, W. Cao, T.S. Chung and J. Morris. Publisher: Wiley India Edn., 2007.
- 5. "Numerical Methods for Engineers with Programming and Software Applications", by Steven C. Chapra and Ra P. Canale. Publisher: Tata McGraw Hill, 2014 7th Edition.
- 6. "Finite Element Procedures", by K.J. Bathe, Prentice Hall of India.

- 7. "Finite Elements in Engineering", by Chandrupatla and Belegundu.
- 8. "Finite element Method", by J.N.Reddy.
- 9. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL1-04		CC	OMMUNICA	TION TECH	NOLOGY		
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
3	0	0	3	60	40	100	3
Objective	calculation communica	knowledge of bandwidt ation systems multiple acc Course	h and signal s, performan	-to-noise ra ce evaluation polies to wir	itio of a sign on, explain t	ial, digital he concept	ŭ
CO 1	methodolo	Students will be able to understand communication system design methodologies, communication system architecture, analogue & digital modulation techniques.					
CO 2	Students w	Students will be able to do computation of data rates, bandwidth, BER.					
CO 3	Students w	ill be able to	carry out the	e link budge	t analysis		

Unit I

Introduction on Communication Systems, Basics of wireless channel behaviour

Unit II

Digital data communication systems, digital signalling techniques

Unit III

Data rates and bandwidth calculation in digital data communication systems

Unit IV

Probability of error and BER calculation, Modulation technologies (analogue & digital), Voice source coding, transmitter and receiver systems

Unit V

Communication system architectures, terminal design and performance, associated information systems

Unit VI

Link budget calculations, telemetry and control and IO/IW implications. Antenna types and their impact on the communication systems

Suggested Books:

- 1. "Fundamentals of communication systems," by Proakis and Salehi. Publisher: Pearson.
- 2. "Communication Systems", by Simon Haykin and Michael Moher. Publisher: Wiley.
- 3. "Modern digital and analog communication systems," by B.P. Lathi and Zhi Ding. Publisher: Oxford University Press.
- 4. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN* questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL1-05		ADVA	NCED MEC	HANICAL EI	NGINEERING	3	
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
3	0	0	3	60	40	100	3
Objective	To provide knowledge to the students about different methods of mechanical system analysis, mechanical simulation soft-ware and use of computational techniques for structural and fluid dynamics. Course Outcomes						
CO 1	Students will be able to understand mechanical analysis software and carry out mathematical modeling for simulation of phenomena behind the structural and fluid dynamics.					,	
CO 2	Students will be able to carry out design & finite element analysis of components of systems and sub-systems.					lysis of	
CO 3	Students w	ill be able to	carry out the	e CFD analys	sis		

Unit I

Introduction to tools for mechanical design & analysis

Unit II

Stress engineering – theory & simulation, mechanics of solids

Unit III

Finite element methods in structural dynamics, Structural integrity

Unit IV

Fluid mechanics

Unit V

Computational fluid dynamics

Unit VI

Component design, Applied materials and corrosion

Suggested Books:

- 1. "An Introduction to Computational Fluid Dynamics: The Finite Volume Method " by H. Versteeg. Publisher: Pearson.
- 2. "Computational Fluid Dynamics the Basics with Applications", by John D. An-der Jr. Publisher: McGraw Hill Education (1 July 2017)
- 3. "Fluid Mechanics: Volume 2: Foundations and Applications of Mechanics (Cambridge-iisc)" by C.S. Jog. Publisher: Cambridge University Press.
- 4. "Fundamentals of Machine Component Design", by Robert C. Juvinall, Kurt M. Marshek. Publisher: John Wiley & Sons
- 5. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

Semester 1, Elective-2 Courses

DT-EL2-01		AUTONO	OMY AND N	AVIGATION	I TECHNOLO	OGY		
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
3	0	0	3	60	40	100	3	
Objective		To provide knowledge to the students about technology of modern navigation systems, particularly satellite-based systems, UAV guidance systems, GPS, SLAM.						
		Course	e Outcomes					
CO 1		rill be able to satellite syste		ne basic pri	nciple of op	eration of	a global	
CO 2	Students w navigation	ill be able to equations.	understand	the navigati	on systems a	and derive	the	
CO 3	Students w	ill be able to	carry out pa	th planning	the UGV / U	AV		
CO 4		ill be able to n satellite co		uations for	calculating a	a position (estimate	

Unit I

Introduction on navigation and guidance systems, Guidance approaches: conventional guidance such as PN (Proportional Navigation)

Unit II

Geodetic fundamentals of navigation, positioning, reference- and coordinate systems and computational methods for navigation and positioning on the surface of the earth

Unit III

Geometric guidance, path planning and following, and optimal guidance; path planning for UGV/UAV guidance systems

Unit IV

Navigation approaches: navigation systems, Understanding the Global Positioning System (GPS)

Unit V

GNSS (Global Navigation Satellite System), terrain-based navigation

Unit VI

SLAM (Simultaneous Localization and Mapping); Cooperative guidance and collision avoidance

- 1. "Global Navigation Satellite Systems: Insights Into GPS", by Bhatta, B., Glonass, Galileo, Compass, and Others. Publisher: BS Publications, New Delhi 2010.
- 2. "Global Positioning Systems, Inertial Navigation, and Integration", by Grewal, M. S., Weill, L. R., Andrews, A. P., Publisher: John Wiley & Sons, New York, 2006.
- 3. "GNSS Global Navigation Satellite Systems", by Verlag Wien. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E., Publisher: Springer 2008.
- 4. "Global Positioning System Theory and Practice", Hofmann-Wellenhof, B., Lichtenegger, H., Verlag Wien, Collins, J. Publisher: Springer 2001.
- 5. Literature / books suggested by respective course Lecturers.

carries 12 Mar	KS.			
The student wil SIX questions Marks .	l attempt a total of SE I by selecting only o n	/EN questions, incl e question from	uding compulsory (each unit and ea	Q. No. 1 and remaini ch question carries

DT-EL2-02		OPTIM	IIZATION TI	HEORY & AI	PPLICATION	IS		
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
3	0	0	3	60	40	100	3	
Objective	algorithms methods a problems. optimization	e knowledge The course and algorithm Apply the m on theory to s in both thee	objective s developed athematical various E	is to cover I for solving results and ingineering applied rese	the concep various typ numerical and Analyt	ots of options of options of options of options technique	mization mization s of	
CO 1	Students will be able to understand mathematical modeling and the formulation of optimization problems.						nulation	
CO 2	Students will be able to create programs based on different optimization algorithms using IT tools, such as MATLAB etc.					ion		
CO 3		algorithms using 11 tools, such as MATLAB etc. Students will be able to understand theory about linear programming, integer programming, and stochastic programming						
CO 4		vill be able to g systems by					of	

Unit

Introduction to optimization, classical optimization techniques

Unit II

Linear programming & nonlinear programming and dimensional minimization methods

Unit III

Non coordination optimization techniques, coordinated optimization techniques, coordinated programming

Unit IV

Dynamic programming, integer programming, stochastic programming

Unit V

Solution of a variety of design problems in mechanical engineering, using numerical optimization techniques

Unit VI

Additional Topics: multi-objective, optimization, game theory, optical control theory

- 1. "Numerical Optimization", by Jorge Nocedal and Stephen J. Write. Publisher: Springer, 2006.
- 2. "Practical methods of Optimization" by R. Fletcher. Publisher: Wiley, 1987.
- 3. "Iterative method for optimization" by C. T. Kelley. Publisher: SIAM, 1999.
- 4. "Introduction to Nonlinear Optimization: Theory, Algorithm, and Application with MATLAB. MOSSIAM Series on Optimization", by Amir Becker.
- 5. "Dynamic Programming and Optimal Control (Volume I) " by Dimitri P. Bertsekas. Publisher: Athena Scientic, 2005.
- 6. "Optimization Theory and Applications", by SS Rao.
- 7. Literature / books suggested by respective course Lecturers.

carries 12 N	larks.					
The student v SIX question Marks.	vill attempt a tot as by selecting	al of SEVEN que only one ques	estions, includin Stion from eac	ng compulsory i ch unit and ea	Q. No. 1 and <i>rei</i> ch question ca	naining arries 8

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (1st Sem.)

DT-EL2-03		MILITARY	/ ELECTRON	IICS SYSTEN	/I ENGINEER	RING				
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
3	0	0	3	60	40	100	3			
Objective	To provide knowledge to the students about the learning of the electronics systems requirement for military environment, generation of system requirements, limitations of COTS equipment and radiation effects on the electronic systems.									
Course Outcomes										
CO 1	Students w	ill be able to	understand	the military	electronics	systems.				
CO 2		ill be able to erational req		stem desigi	n requireme	ents as per	mission			
CO 3	Students w	ill be able to	create digita	l simulation	models					
CO 4	Students w electronics	ill be able to systems.	understand	the limitation	ons of the C	OTS availal	ble			
CO 5	Students w electronics	ill be able to systems	evaluate th	ne radiation	effects on t	he perforn	nance of			

Unit I

Introduction to electronics engineering concepts and methods for the design and integration of complex defense systems

Unit II

Familiarity with the systems engineering process through case studies of representative defense systems

Unit III

Introduction to methods used for determination of system requirements from mission needs and operational requirements

Unit IV

Digital simulation models, including those in current used in defence for determining engineering and performance trade-offs

Unit V

Limitations of commercial-off-the-shelf (COTS) integrated circuits, thermal failure, electrostatic breakdown, noise in solid state devices, packaging reliability issues

Unit VI

Radiation effects due to space and nuclear environments, and the limited availability of military integrated circuit suppliers

Suggested Books:

- 1. "Introduction to Electronic Defense Systems", by Neri Filippo. Publisher: Artech House Publishers.
- 2. "Military Handbook of Electronic Reliability design", by US Department of Defence.
- 3. "Defence Electronics Standards and Quality Assurance", by Ray Tricker. Pub-lisher : Elsevier
- 4. "Handbook of Defence Electronics and Optronics: Fundamentals, Technologies and Systems", by Anil K. Maini. Publisher: John Wiley & Sons Ltd

- 5. "Digital Simulation Methods", by M.G. Hartley. Publisher: P. Peregrinus Ltd
- 6. "Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems", By Alper Demir. Publisher: Springer.
- 7. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (1st Sem.)

DT-EL2-04		SYST	EM ENGINE	ERING ANI	O ANALYSIS					
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
3	0	0	3	60	40	100	3			
Objective	To provide knowledge to the students about the military systems engineering, system requirements, basics of system design, architecture, operational requirements, system reliability and management.									
Course Outcomes										
CO 1	Students will be able to understand the system design requirements, architecture, functional requirements.									
CO 2	Students w requirement	ill be able to g nt analysis.	enerate the	system requ	irements do	cuments as	s per the			
CO 3	Students will be able to understand the system reliability, maintainability, usability issues									
CO 4	Students w	ill be able to	carry out the	e system rel	iability analy	ysis.				

Unit I

Fundamentals of systems engineering and system architecting of weapon system, system Engg. standards 15288, requirements analysis, functional analysis and allocation, preliminary system architecture

Unit II

Systems analysis, system design, and the basics of test and evaluation, Introduction to combat systems

Unit III

System development phases (Conceiving, Designing, Implementing, and Operating)

Unit IV

Techniques of system design and assessment for operational feasibility, including reliability, maintainability, usability (including human factors and human performance).

Unit V

Supportability, and producibility, System cost assessment and effectiveness estimation

Unit VI

Reliability analysis and management (basic tools and methods of reliability for developing complex systems including electronic components, mechanical components, and software), redundancy, graceful degradation, fault tolerance, MTBF

Suggested Books:

- 1. "The Engineering Design of Systems: Models and Methods", by Buede D.M.2. Publisher: John Wiley & Sons Inc.
- 2. "Systems engineering fundamentals", by Defense Acquisition University Pressfort Belvoir, Virginia
- 3. "System Analysis Design and Development", by Charles S. Wasson. Publisher: Wiley Series in System Engineering and Management.
- 4. "Principles of Planned Maintenance", by Clifton R H. Publisher: McGraw Hill, New York.
- 5. "An introduction to Reliability and Maintainability Engineering", by Ebling CE. Tata Mc Graw Hill.

- 6. "Reliability Engineering", by Srinath L S. Publisher: Affiliated East-West Press Limited, New Delhi, 2002.
- 7. "Engineering Maintainability", by Dhillon B S. Publisher: Prentice Hall of India.
- 8. Literature / Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

Semester -II

MASTER OF TECHNOLOGY IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22)
SPECIALIZATION: COMBAT VEHICLE ENGINEERING

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2nd Sem.) SPECIALIZATION: COMBAT VEHICLE ENGINEERING

DT-CVE-01			Combat V	ehicle Dyna	amics					
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
4	0	0	4	60	40	100	3			
Objective	The main objective of the course is to provide knowledge to the students about important concepts of combat vehicle dynamics, terrain modeling, and vehicle suspension systems, wheeled & tracked vehicles.									
Course Outcomes										
CO 1	Students w	ill be able to	carry out ter	rain modeli	ng.					
CO 2	Students w	ill be able to	carry out sin	nulation and	d testing of s	uspension	system.			
CO 3	Students w	ill be able to	carry out de	sign of milit	ary vehicles					
CO 4		Students will be able to understand the longitudinal dynamic response during acceleration and braking.								
CO 5	Students w ride, pitch a	ill be able to and roll.	understand	the Vertica	I dynamic re	esponse to	analyze			

UNIT 1

Human response to vibration (HRV).

Unit 2

Terrain modeling.

Unit 3

Selection and design for military vehicles.

Unit 4

Suspension types, modeling, simulation and testing of suspension systems and components, this includes transient, frequency random response.

Unit 5

Spring and damper types, selection and characteristics, effects of noise Tires for military and civilian vehicles and their behavior.

Unit 6

Wheeled and tracked vehicles at low and high speed including steady state and transient response.

References / Suggested Books:

- 1. "Vehicle Refinement: Controlling Noise and Vibration in Road Vehicles", by Matthew Harrison. Publisher: Butterworth-Heinemann.
- 2. "Vehicle Noise and Vibration Refinement", by Xu Wang. Publisher: Woodhead Publishing.
- 3. "Noise and Torsional Vibration Analysis of Hybrid Vehicles (Synthesis Lectures on Advances in Automotive Technology)", by Xiaolin Tang, Yanjun Huang. Publisher: Morgan & Claypool Publishers.
- 4. "Principles of Vibration Analysis with Applications in Automotive", by C.Q. Liu. Publisher : SAE International.
- 5. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2nd Sem.) SPECIALIZATION: COMBAT VEHICLE ENGINEERING

DT-CVE-02		C	Combat Sys	stem Engir	neering				
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
4	0	0	4	60	40	100	3		
Objective	The main objective of the course is to provide knowledge to the students about the basic principles, processes and products of combat systems engineering, sensor technologies. They will also be introduced to weapons of mass destruction.								
		Course	e Outcomes						
CO 1	Students w	ill be able to	understand [•]	the principl	es of design	of combat :	systems.		
CO 2	systems th	Students will be able to understand the how to design, build, and maintain systems that control different kinds of weapons, including nuclear, chemical, and biological weapons.							
CO 3	Students w	ill be able to u	ınderstand tl	he sensor sy	stems, such	as radar an	d sonar.		
CO 4	Students w	ill be able to	understand	the risks and	d threats to	combat sys	items.		

Unit 1

Engineering principles to the design of combat systems with emphasis on detection, tracking, and identification systems

Unit 2

Threat Spectrum, Battle Field Environment.

Unit 3

Vehicle Configuration, Man Machine Interface.

Unit 4

Sensor technologies (radars, ESM, active and passive sonar, infrared, electro-optical, and magnetic/electric/gravity field sensors).

Unit 5

Introduction to information warfare and weapons (including electronic warfare).

Unit 6

Directed energy weapons, weapons of mass destruction (nuclear, chemical, biological, and radiological), and nonlethal weapons.

References / Suggested Books:

- 1. "Warship Combat System Engineering Management Software" by Zhao Xiao Zhe.
- 2. "Measurement, Instrumentation and sensor Handbook", by John G Webster. Publisher: CRC Press, Florida 2nd edition.
- 3. "Engineering Principles of Combat Modeling and Distributed Simulation", by Andreas Tolk. Publisher: Wiley Publication.
- 4. "Sensors and Transducers", by Patranabis D. Publisher: Prentice Hall India Limited.
- 5. "Magnetic Sensors Principles and Applications" by Author Kuang.
- 6. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of **THIRTEEN** questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2nd Sem.) SPECIALIZATION: COMBAT VEHICLE ENGINEERING

DT-CVE-03		Test and Evaluation of weapon system								
Lecture	Tutorial	Test Test (Hrs								
4	0	0 0 4 60 40 100								
Objective	about wea	The main objective of the course is to provide knowledge to the students about weapon system, the factors that affect their performance and test methodologies. Course Outcomes								
CO 1	and weapo	Students will be able to understand the weapon system requirements and weapon performance characterization under operating and ambient conditions.								
CO 2		vill be able t ost, and test of system.								

Unit 1

Weapon system requirements (land, air, naval).

Unit 2

Weapon performance characterization, Operating environment and ambient conditions.

Unit 3

Factors affecting system performance, System Acceptance testing.

Unit 4

System reliability, system maintenance concept, functional analysis, life cycle costs, logistics support analysis, systems design, production, spare/repair parts management.

Unit 5

Static test procedures, Shock and vibration tests, Accelerated environmental tests, Closed vessel test, conditioning chambers.

Unit 6

Test methods for evaluation of safety, Dynamic trials, Range requirement analysis, range instrumentation, Post trial Analysis.

References / Suggested Books:

- 1. "Reliability Evaluation of Engineering Systems Concepts and Techniques", by Billinton, Roy, Allan, Ronald N. Publisher: Springer
- 2. "Man-Machine-Environment System Engineering", by Editors: Long, Shengzhao, Dhillon, Balbir S. Publisher: Springer.
- 3. "Vibration Testing: Theory and Practice", by Kenneth G. Mcconnell. Publisher : John Wiley & Sons.
- 4. "Vibration Monitoring, Testing, and Instrumentation", by Clarence W. de Silva. Publisher: CRC Press.
- 5. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2nd Sem.) SPECIALIZATION: COMBAT VEHICLE ENGINEERING

DT-CVE-L01	Combat Vehicle Dynamics lab							
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
0	0	2	2	60	40	100	3	

List of Experiments

 $Lab\ experiments\ will\ be\ added\ in\ consultation\ with\ DRDO\ labs\ considering\ the\ available\ facilities$

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2nd Sem.) SPECIALIZATION: COMBAT VEHICLE ENGINEERING

~-											
DT-CVE-L02	Combat System Engineering lab										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
0	0	2	2	60	40	100	3				

List of Experiments

Lab experiments will be added in consultation with DRDO labs considering the available facilities

Semester -II

MASTER OF TECHNOLOGY
IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22) SPECIALIZATION: AEROSPACE TECHNOLOGY

DT-AT- 01	Aero	Aerospace System Configuration, Design and Simulation										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)					
4	0	0	4	60	40	100	3					
Objective	The main objective of the course is to provide knowledge to the students about the process & techniques of aerospace system design, meeting the specified design requirements. They will also learn about carrying structural and aerodynamic analysis, performance evaluation of aircraft and stability analysis.											
			e Outcomes									
CO 1	Students will be able to requirements and process		d the concep	ot of missile	e system an	d its desig	jn					
CO 2	Students will be able to l verbal forms	Design an aer	ospace vehic	cle and artic	ulate its ben	efits in wri	tten and					
CO 3	Students will be able to fluid analysis and advar air, ground to air, air to	ices in aero-d	ynamics. Stu	udents will l	be able to ur	nderstand i						

UNIT 1

Introduction (aero-elastic phenomena and design requirements), Introduction to missiles & systems, Design process.

UNIT 2

Structural requirement, Structural and aerodynamic stiffness, Static aero-elasticity: torsional divergence, Structural vibration and modal analysis.

UNIT 3

Aerodynamic loads on an oscillating lifting surface, Characteristics of flutter and important design parameters, Methods for aero-elastic analysis, Computational fluid dynamics, advances in aero dynamics (Hypersonic Flows and Aerodynamic Heating).

UNIT 4

Aircraft performance (cruising, climb, descent, take-off, landing, maneuver, flight path).

UNIT 5

System's stability & control, aerodynamics control, Introduction to dynamic stability, first and second order responses, Equations of motion and modal characteristics.

LINIT A

Introduction to air to air, ground to air, air to ground weapon systems, UAV mounted GW and UCAVs.

- 1. "Aircraft design: a conceptual approach", by D. Raymer
- 2. "Flight Dynamics Principles", by Michael V. Cook
- **3.** "Introduction to Structural Dynamics and Aeroelasticity", by Dewey H. Hodges, G. Alvin Pierce
- **4.** "Airplane Aerodynamics and Performance", by Chuan Tau Edward Lan
- **5.** "Fundamentals of Structural Dynamics", by Roy R. Craig Jr., Andrew J. Kurdila.

carries 12 Ma	rks.				SIX Units). Q. No .	
The student wind SIX questions Marks.	ill attempt a total of by selecting on	of SEVEN quest I ly one questi	tions, including on from each	compulsory Q. N <i>unit and each</i>	lo. 1 and remainii question carries	าg 8

DT-AT-		Guida	nce & cont	rol						
02										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time			
				Test	Test		(Hrs.)			
4	0	0 0 4 60 40 100 3								
Objective	The main objective of the course is to provide knowledge to the students about fundamental of satellite navigation, navigation mathematics, principles of radio navigation, INS/GNSS integration and missile control methods.									
Course Outcomes										
CO 1		Students will be able to understand the principles of satellite navigation, inertial navigation, radio positioning.								
CO 2	Students will be able to	understand \	/arious aspe	ects of desig	ning a navig	ation syste	em.			
CO 3	Develop mathematical r	model of miss	sile dynamic	S.						
CO 4	Carry out simulation for	aircraft/mis	sile using m	athematica	I tools like N	//ATLAB.				

UNIT 1

Introduction to Navigation, Navigation Mathematics.

UNIT 2

GNSS: fundamentals, Signals, and Satellites: Fundamentals of Satellite Navigation, Inertial Navigation, Advanced satellite Navigation, Principles of radio Positioning, Terrestrial radio Navigation, Short-Range Positioning, Satellite Navigation Processing

UNIT 3

Errors and Geometry, Dead Reckoning, Attitude, and Height Measurement, Feature matching, INS/GNSS Integration.

UNIT 4

Missile Control Methods: Aerodynamic and Thrust Vector Control, Polar and Cartesian Control.

UNIT 5

Mathematical Modelling of Missile Dynamics; Missile Actuators and Sensors. Roll and Roll Rate Stabilization.

UNIT 6

Design and Analysis of Lateral Autopilots, 6 DOF simulation for aircraft/missile using MATLAB

- 1. "Modern Inertial Technology Navigation, Guidance, and Control", by Anthony Lawrence 2012. Publisher: Springer New York.
- 2. "The Global Positioning System & Inertial Navigation", by Jay Farrell. Publisher: McGraw-Hill Education (16 December 1998).
- 3. "MATLAB for Engineering Applications", by William Palm. Publisher: McGraw-Hill Education; 4th edition (February 6, 2018).
- 4. "Global Navigation Satellite Systems, Inertial Navigation, and Integration", by Grewal, M. S., Andrews, A. P., Bartone, C. G. (2013). Publisher: John Wiley and Sons Inc.
- 5. "Principles of GNSS, inertial and multi-sensor integrated navigation systems", by Groves, P. D. Publisher: Artech House.
- 6. "Optimal State Estimation", by Kalman, H Infinity.
- 7. "Nonlinear Approaches", by Simon, D. (2006). Publisher: Wiley-Interscience

Note: The paper	er will have a total of TIVE Type and have o	THIRTEEN question	ns. Question No. 1	, which is compulso
carries 12 Mar	ks.	contents from the	entine synabus (a	ii six oiiits). Q. NC
	l attempt a total of SEN by selecting only on			

DT-AT-		Aeı	rospace Pro	pulsion						
03			-							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time			
				Test	Test		(Hrs.)			
4	0 0 4 60 40 100									
Objective	The main objective of the course is to provide knowledge to the students about different criteria for the selection and evaluation of different types of propulsion systems, analysis of propulsion systems and the thermodynamics behind the critical parts of Aerospace system.									
		Course	Outcomes							
CO 1	Students will be able to aerospace system.	understand a	about therm	odynamics	and fluid dy	namics be	hind the			
CO 2	Students will be able to	Students will be able to understand the of Rocket motor design.								
CO 3	Students will be able t aerospace.	o different d	esign aspec	ts related t	o propulsio	n systems	used in			

UNIT 1

Classification & mode of operation of various propulsion systems, basis thermodynamics & fluid Dynamics.

UNIT 2

Rocket motor design & analysis, Gas Turbine Engine design, GT engine efficiency, GT engine heat transfer & cooling.

UNIT 3

Aircraft performance, jet engine performance.

UNIT 4

Jet engine control (compressor performance, axial turbine performance, Fuel systems & pumps, airframe fuel systems, hydro-mechanical fuel metering, Electronics engine control.

UNIT 5

System integration

UNIT 6

Computational fluid dynamics (flow modelling strategies, physical modelling, finite difference equations, etc.)

- 1. "Rocket Propulsion Elements", by George Paul Sutton and Oscar Biblarz. Pub-lisher: John Wiley & Sons
- 2. "Modern Engineering for Design of Liquid-Propellant Rocket Engines: Progress in Astronautics and Aeronautics Series" by Dieter K. Huzel, David H. Huang.
- 3. "An Introduction to Computational Fluid Dynamics: The Finite Volume Method" by H. Versteeg. Publisher: Pearson; 2nd edition.
- 4. "Computational Fluid Dynamics the Basics with Applications" by John D. An-derson, Jr. Publisher: McGraw Hill Education (1 July 2017)
- 5. "Fluid Mechanics: Volume 2: Foundations and Applications of Mechanics", by C. S. Jog. Publisher: Cambridge University Press; 3rd edition.
- 6. "Parallel Processing for Jet Engine Control" by Thompson, Haydn A, Publisher: Springer-Verlag London

7. "Fundamentals of Machine Component Design", by Robert C. Juvinall, Kurt M. Marshek. Publisher: John Wiley & Sons. Note: The paper will have a total of THIRTEEN questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). Q. No. 1 carries 12 Marks. The student will attempt a total of **SEVEN** questions, including compulsory Q. No. 1 and **remaining** SIX questions by selecting only one question from each unit and each question carries 8 Marks.

DT-AT- L01	Aerospac	Aerospace System Configuration, Design & Simulation Lab							
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
0	0	2	2	60	40	100	2		

List of Experiments

Lab experiments will be added in consultation with DRDO labs considering the available facilities

DT-AT-		Guidance & Control lab									
L02											
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time				
				Test	Test		(Hrs.)				
0	0	2	2	60	40	100	2				

List of Experiments

Lab experiments will be added in consultation with DRDO labs considering the available facilities

Semester -II

MASTER OF TECHNOLOGY
IN
DEFENCE TECHNOLOGY (w. e. f. 2021-22)
SPECIALIZATION: NAVAL TECHNOLOGY

SI ESIMEIZMITOR: WAYNE I ESIMOESSI										
DT-NT-		Naval Co	mbat Systei	m Engineer	ring					
01										
	T4									
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time			
				Test	Test		(Hrs.)			
4	0	0	4	60	40	100	3			
Objective	To provide knowledge to the students about the basic principles, processes and products of combat systems engineering. They will learn about systematic approach for the development and management of complete naval combat systems and functional analysis, design synthesis and system analysis, ship integration and test, management and planning									
		Course	e Outcomes	;						
CO 1	Students will be able to	understand	the theory	of Naval Co	ombat Syste	em Engine	ering.			
60.2	Ctdo.ato		a intogratio	on of comp	ananta ta d	ovedon ove	n di coblo			
CO 2	Students will be able to u	ınderstand th	ie iritegratio	on or comp	onents to d	evelop sur	vivable			
	combat system									
CO 3	Students will be able to a and Marine Engineering				orinciples of	Naval Arch	itecture			

UNIT 1

Introduction of naval combat systems.

UNIT 2

Integration of naval combat systems, Detection, engagement, and control elements interact with each other and on how to combine them into an efficient and survivable combat system

UNIT 3

Signature reduction

UNIT 4

Readiness assessment, embedded training, and support system interfaces

UNIT 5

System-oriented approach to integrating the principles of Naval Architecture and Marine Engineering in the design of ship subsystems

UNIT 6

Engineering design tools and analysis methods to meet specified systems requirements.

- **1.** "Introduction to Naval Architecture", by Tupper, E. C Fourth. Publisher Butterworth-Heinemann. Formerly Muckle's Naval Architecture for Marine Engineers.
- 2. "Introduction to Naval architecture", by Gillmer, Thomas C. Publisher: Naval Institute Press.
- **3.** "The Maritime Engineering Reference Book: A Guide to Ship Design, Construction and Operation". Publisher: Butterworth-Heinemann.
- **4.** "Naval Architecture for Marine Engineers: Vol 4", by Richard Pemberton, E A Stokoe. Publisher: Thomas Reed.
- **5.** "Principles of Naval Architecture, Volumes 1 & 2", by Henry E. Rossel, Lawrence B. Chapman. Publisher: Society of Naval Architects and Marine Engineers.
- **6.** "Modern Naval Combat", by David Miller. Publisher: Crescent.
- 7. Literature / books suggested by respective course Lecturers.

shall be OBJ carries 12 N	aper will have a total of <i>THIF</i> ECTIVE Type and have conto larks.	ents from the entire s	yllabus (all SIX Units)	. Q. No. 1
The student six question Marks.	will attempt a total of SEVEN ons by selecting only one qu	questions, including cor restion from each un	npulsory Q. No. 1 and <i>i</i> it and each question	emaining carries 8

DT-NT-	Guida	nce, Navigati	ion, and Co	ntrol of Ma	rine Systen	ns		
02								
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time	
				Test	Test		(Hrs.)	
4	0	0	4	60	40	100	3	
Objective	To provide knowledge to the students about the fundamentals of inertial navigation, principles of inertial accelerometers, and gyroscopes. They will learn the classical approach to the robust design of non-linear GNC system. They will learn the mathematical tools for generating theoretical building blocks for solutions to current and future naval challenges. Course Outcomes							
CO 1	Students will be able to	understand	the princip	oles of iner	tial navigat	ion.		
CO 2	Students will be able to	understand \	/arious asp	ects of des	igning a na	vigation s	system	
CO 3	Students will be able to systems							
CO 4	Students will be able to systems.	apply MATL	AB and Sim	nulink tool	for simulat	ion of nav	/igation	

UNIT 1

Fundamentals of inertial navigation, principles of inertial accelerometers, and gyroscopes.

UNIT 2

Derivation of gimbaled and strapdown navigation equations and corresponding error analysis.

UNIT 3

Classical approach to the robust design of nonlinear GNC systems that accounts for both the stability and performance specifications, robust autopilot design.

UNIT 4

Mathematical modeling.

UNIT 5

Advanced capabilities of MATLAB & Simulink.

UNIT 6

Multi-robot control techniques, theoretical building blocks for solutions to current and future naval challenges.

- **1.** Modern Inertial Technology Navigation, Guidance, and Control" by Anthony Lawrence, Publisher: Springer New York, 2012.
- 2. "Marine Control Systems Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles" by Thor I. Fossen, Publisher: Marine Cybernetics, Trondheim, Norway (January 1, 2002)
- 3. "MATLAB for Engineering Applications" by William Palm Publisher: McGraw-Hill Education; 4th edition (February 6, 2018)
- **4.** "Modeling and Simulation of Systems Using MATLAB and Simulink" by Deven-dra K. Chaturvedi, Publisher: CRC Press, 2010.

5.	"Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication, and
	Swarming" by Eugene Kagan, Nir Shvalb, Irad Ben-Gal, Wiley 2019.

6. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1 carries 12 Marks**.

DT-NT-		IV	larine Prop	ulsion							
03											
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
4	0	0	4	60	40	100	3				
Objective	To provide knowledge to the students about basic principles of power and propulsion of marine system. They will understand fluid mechanics, dynamic propulsion system modelling and aerothermodynamics of various subsystems of marine systems. They will be introduced to modern control design theory. Course Outcomes										
CO 1	Students will be able to	understand	the propul	sion of ma	rine systen	1					
CO 2	Students will be able to	understand	the aerothe	rmodynan	nics of com	pressors,					
	combustors, turbines	heat exchai	ngers etc.								
CO 3	Students will be able to	Students will be able to model the Dynamic propulsion systems									
CO 4	Students will be able t system and marine pr		lysis meth	ods and d	esign strat	egies for	control				

UNIT 1

Basic principles of power and propulsion of marine systems.

UNIT 2

Laws of thermodynamics and fluid mechanics to analyse and design of components and systems, Dynamic propulsion systems modelling and analysis methods.

UNIT 3

Aerothermodynamics of compressors, combustors, turbines, heat exchangers, inlets and nozzles.

UNIT 4

Mechanical and structural design aspects of engine development, Control design specifications and design strategies.

UNIT 5

Introduction to modern control design theory and multivariable methods. Theory and applications of optimal control and discrete-time control systems.

UNIT 6

Case studies of current naval propulsion control systems.

- **1.** "Marine Propellers and Propulsion", by John Carlton Publisher: Butterworth-Heinemann.
- **2.** "Advanced Thermodynamics for Engineers Book", by D. E. Winterbone. Publisher: Mercury Learning & Information.
- **3.** "Elements of classical thermodynamics: For advanced students of Physics", by A.B. Pippard. Publisher CAMBRIDGE UNIVERSITY PRESS.
- **4.** "Gas Turbines for Electric Power Generation", by S. Can Gülen.
- **5.** Literature / books suggested by respective course Lecturers.

carries 12 Ma	rks.				
The student wing SIX questions Marks.	ill attempt a total o by selecting onl	f SEVEN questic y one questior	ons, including cor on from each un	npulsory Q. No. 1 it and each que	and remaining stion carries 8

DT-NT- L01		Naval Combat System Engineering lab							
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
0	0	2	2	60	40	100	2		

List of Experiments

 $Lab\ experiments\ will\ be\ added\ in\ consultation\ with\ DRDO\ labs\ considering\ the\ available\ facilities$

DT-NT-	Guidan	Guidance, Navigation and Control of Marine Systems lab								
L02										
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time			
				Test	Test		(Hrs.)			
0	0	2	2	60	40	100	2			

List of Experiments

Lab experiments will be added in consultation with DRDO labs considering the available facilities

Semester -II

MASTER OF TECHNOLOGY IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22)
SPECIALIZATION: COMMUNICATION SYSTEMS &
SENSORS

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2ND Sem.) SPECIALIZATION: COMMUNICATION SYSTEMS & SENSORS

DT-CSS-01			RADAR TEC	HNOLOGIES	3					
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
4	0	0	4	60	40	100	3			
Objective	To provide knowledge to the students learning on the radar systems, radar parameters, radar environment, theory of detection and design of radar elements, different types of radars & their application.									
Course Outcomes										
CO 1	Students will be able to understand the design of radar systems, solve range equations.									
CO 2	Students will be a relevant to radar soft particular cases	systems to ca								
CO 3	Students will be al	ole to unders	tand the ma	jor compone	ents of a mod	dern radar	system			
CO 4	Students will be all advanced radar te		asic radar siç	nal process	ing techniqu	ies and und	derstand			
CO 5	Students will be al systems.	ole to know t	he major fui	nctions and	applications	of a mode	rn radar			

Unit I

Introduction to RADAR, Radar parameters/definitions, radar equations

Unit II

Radar cross section (RCS) & Theory of detection, Clutter

Unit III

Atmospheric propagation, Surveillance and Tracking Radar, Radar Designs

Unit IV

Radar elements Design, Radar Transmitter design, Radar antenna design, Duplexer/TR switch & Radar Receiver.

Unit V

Radar signals and networks, Radar signal processing chain, Pulse compression and micro-doppler processing, Tracking algorithms

Unit VI

Phased array radar, Data processing for phased array radar, Airborne radar, imaging radar, Synthetic aperture radar, inverse synthic aperture radar, adaptive array processing

Suggested Books:

- 1. "Introduction to Radar Systems" by M.I. Skolnik. Publisher: Tata McGraw hill edition, 2001.
- 2. "Radar Systems Analysis and Design using MATLAB", by B.R. Mahafza. Publisher CRC Press, 2013.
- 3. "Monopulse Principles and Techniques", by S.M. sherman and D.K. Barton. Publisher: Artech house, 2011
- 4. "Fundamentals of Radar Signal Processing", by M.A. Richards. Publisher Tata McGraw hill.
- 5. "Ground Penetrating Radar: Theory and Applications", by, Editor: H.M. Jolt. Publisher: Elsevier.

- 6. "Radar, Sonar And Navigation Engineering", by K. K Sharma. Publisher: S K Kataria & Sons.
- 7. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2ND Sem.) SPECIALIZATION: COMMUNICATION SYSTEMS & SENSORS

DT-CSS-02	DIGITAL & SA	TELLITE CON	1MUNICATI	ON AND NA	VIGATION	FROM SPA	ICE			
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
4	0	0	4	60	40	100	3			
Objective	To provide knowledge to the students learning on the analogue and digital communication systems, optical communication, satellite communications systems, modulations techniques, signal propagation effects, navigation techniques.									
Course Outcomes										
CO 1	Students will be abl	Students will be able to understand the communication techniques.								
CO 2	Students will be abl	e to evaluate	the perform	ance of com	munication	systems.				
CO 3	Students will be abl	e to design th	ne analogue a	and digital c	ommunicati	on systems	5			
CO 4	Students will be abl	e to understa	ind and anal	yse the signa	al transmiss	ion effects.				
CO 5	Students will be abl	e understand	I the differer	nt types of na	avigation ted	chniques.				

Unit I

Elements of a communications system and their relationship to system performance

Unit II

Free space optical communication, Fiber optics communication, Wireless/cellular communications

Unit III

Fundamental concepts such as current/voltage relationships, time and frequency domains, power spectral density, random signals, Communications system components and functions, analog and digital communications systems

Unit IV

Modulation transmission and reception; baseband and passband digital modulation; system, noise, transmission lines, waveguides and antennas, FEC techniques for mitigating channel errors.

Unit V

Propagation effects on signal transmission; end-to-end path calculations for wire/coax, and RF systems including terrestrial ground links and satellite communications, Spread spectrum, concept of frequency hoping

Unit VI

Navigation techniques from space regarding functioning of GPS, GLONASS, IRNSS & Galileo

Suggested Books:

- 1. "Satellite communication", by T. Pratt, C. W. Bostian, J. E. Allnut. Publisher: John Willey and sons
- 2. "Satellite Communications Systems: systems, techniques and technology", by G. Maral, M. Bousquet, Z. Sun. Publisher: John Willy and sons
- 3. "Digital Communications: Fundamentals and Applications", B. Sklar . Prentice-Hall, Inc.
- 4. "Understanding of GPS/GNSS: Principles and Applications", by E. Kaplan and C. Hegarty. Publisher: Artech House Publishers.

5. Literature / books suggested by respective course Lecturers. Note: The paper will have a total of THIRTEEN questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). Q. No. 1 carries 12 Marks. The student will attempt a total of **SEVEN** questions, including compulsory Q. No. 1 and **remaining** SIX questions by selecting only one question from each unit and each question carries 8 Marks.

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2ND Sem.) SPECIALIZATION: COMMUNICATION SYSTEMS & SENSORS

DT-CSS-03	TACTICAL BATTLEFIELD COMMUNICATION & ELECTRONIC WARFARE						
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
4	0	0	4	60	40	100	3
Objective	To provide knowledge to the students learning on the techniques for setting up intercept and jamming links for Electronic Warfare (EW) against ground to ground enemy communication signals, UAV command and data links, cell phone links and weapon control links, techniques for predicting intercept and jamming performance.						
Course Outcomes							
CO 1	Students will be able to understand the nature of tactical battlefield communication.						
CO 2	Students will be able to calculate communication link performance.						
CO 3	Students will be able to calculate the requirements for interception of tactical communication						
CO 4	Students will be able to Calculate the requirements for emitter location, intercept and jamming of tactical comm, signals including weapon control link, UAV links, Cell phone links.						
CO 5	Students will be able to use various tools to perform electronic warfare calculations.						

Unit I

Radiometry and power calculation, signature generation, atmospheric effects

Unit II

Radar ES operational use, radar/ES detection battle, quiet radar, jamming techniques & strategies, jamming of SAR systems

Unit III

Introduction to radar waveform interception, Technology and operational characteristics of electronic warfare, Signal processing statics & analysis, statistics & noise, analogue & digital signal processing

Unit IV

Decision theory- hypothesis testing, probabilities of false alarm and detection, Bayesian systems, error probability and bit error rate, receiver operating.

Unit V

UAV Payload/link Issues, cell phone issues, Intercept links, Frequency hopping and other LPI threats; Special techniques for jamming LPI signals

Unit VI

Introduction to electronic counter measures and counter-counter measures

Suggested Books:

- 1. "Tactical Battlefield Communications Electronic Warfare", by David Adamy 2008
- 2. "Military Communications in the Future Battlefield", by Marko Suojanen.
- 3. "Electronic Warfare for the Digitized Battlefield", by Michael Frater, Michael Ryan.
- 4. Literature / books suggested by respective course Lecturers.

carries 12 M	arks.				
The student w SIX question . Marks .	vill attempt a total o s by selecting on	of SEVEN question Iy one question	<i>ns</i> , including con In <i>from each uni</i>	npulsory Q. No. 1 t and each ques	and remaining stion carries 8

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2ND Sem.) SPECIALIZATION: COMMUNICATION SYSTEMS & SENSORS

DT-CSS-L01	RADAR TECHNOLOGIES LAB						
	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
0	0	4	2	60	40	100	3

List of Experiments

Lab experiments will be added in consultation with	DRDO labs considering	the available facilities
--	-----------------------	--------------------------

MASTER OF TECHNOLOGY IN DEFENCE TECHNOLOGY (2 $^{\text{ND}}$ Sem.) SPECIALIZATION: COMMUNICATION SYSTEMS & SENSORS

DT-CSS-L02	DIGITAL & SATELLITE COMMUNICATION AND NAVIGATION FROM SPACE							
	LAB							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time	
				Test	Test		(Hrs.)	
0	0	4	2	60	40	100	3	

List of Experiments

Lab experiments will be added in consultation with DRDO labs considering the available facilities

Semester -II

MASTER OF TECHNOLOGY IN

DEFENCE TECHNOLOGY (w. e. f. 2021-22)
SPECIALIZATION: DIRECTED ENERGY TECHNOLOGY

DT-DET-01		DIRECTED E	NERGY SOL	JRCES (LASF	ERS, MICRO	WAVE)					
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
4	0	0	4	60	40	100	3				
Objective	To provide knowledge to the students on the high-power laser sources, laser power scaling methodologies, laser beam characterization, optics requirements for high power lasers and generation of high-power microwave sources.										
	Course Outcomes										
CO 1		vill be able to gies of lasers.		l high power	r lasers sour	rces, power	r scaling				
CO 2	Students w beam prop	vill be able to agation.	carry out th	ie atmosphe	ric effects o	n high pow	ver laser				
CO 3	Students w laser beam	vill be able to is	estimate op	otics require	ment for ha	andling hig	h power				
CO 4	Students w microwave	vill be able u e sources.	nderstand (generation a	and testing	of high-po	wer				

Unit I

Introduction of directed energy weapons, Potential weapon applications, how they work, application scenarios

Unit II

High power laser sources (solid state, fiber, free election, liquid etc.), Laser power scaling

Unit III

Atmospheric Laser Beam propagation

Unit IV

Characterization of laser beam parameters

Unit V

Optical material & coating for high energy lasers

Unit VI

High power microwave sources, HPM effects, testing of HPM sources

Suggested Books:

- 1. "High Power Laser Handbook, by Hagop Injeyan & Gregory D. Goodno
- 2. "High Power Microwaves James Benford", by John A. Swegle, EdlSchamiloglu.
- 3. "Coherent Laser Beam Combining", by Arnaud Brignon.
- 4. "High-Power Optics Lasers and Applications", by Apollonov, Victor V.
- 5. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-DET-02	BEAM COI	NTROL TECH	NOLOGY, TA	ARGET ACQ	UISITION, B	EAM POIN	ITING &	
			TR	RACKING				
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time	
				Test	Test		(Hrs.)	
4	0	0	4	60	40	100	3	
Objective	To provide knowledge to the students about high power laser & microwave beam control technologies, laser beam directors, their operational requirements, design procedure, design criticality, active target imaging & target tracking, recent developments in the target tracking, atmospheric effects on laser propagation, mitigation methodologies and adaptive optics.							
	.		e Outcomes					
CO 1		vill be able to				k microwa\	ve beam	
	directors, c	lesign require	ements & de	sign method	dologies.			
CO 2	Students w	ill be able to	gain knowle	edge of activ	e target ima	iging, coars	se & fine	
	target track	king and cont	emporary ta	irget trackir	ig technolog	ies.		
CO 3		rill be able t ce and hence					r beam	

Unit I

Introduction to beam control, Beam control hardware

Unit II

Introduction to laser beam directors, Requirement for high power laser beam directors, Conceptual optical design & analysis of beam Directors

Unit III

Laser beam tracking, pointing & control, Gimbals, Coarse & fine tracking

Unit IV

Active laser imaging & target tracking, Closed loop image tracking, Hardware requirement, Various tracking algorithms, multi-spectral target imaging, Multiple target engagements, rapid retargeting.

Unit V

Atmospheric propagation of Laser beams, atmospheric propagation of laser beams, Correction of atmospheric effects, Adaptive optics, Atmospheric modeling of laser propagation

Unit VI

Introduction to HPM beam control technology, major sub-assemblies

Suggested Books:

- 1. "Beam Control for Laser Systems", by Paul Merritt.
- 2. "Principles of Adaptive Optics", by Robert Tyson.
- 3. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of **THIRTEEN** questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-DET-03	DI	RECTED ENE	RGY WEAP	ON (DEW) S	YSTEM ENG	INEERING	
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
4	0	0	4	60	40	100	3
Objective	systems. The manageme		ain knowled nanagement rovide an ir	lge about sy: of DEW and nsight about	stem design I the operati	& analysis, onal requir	thermal rements.
		Cours	e Outcomes				
CO 1	Students w	ill be able to	understand	of DEW syst	ems, design	requireme	ents.
CO 2	Students will be able to evaluate the thermal and power requirements.						
CO 3	Students w	ill be able to I	Evaluate the	system per	formance.		

Unit I

Attributes of DEW, System requirements, DEW system design, system analysis

Unit II

DEW subsystems, System modeling & simulation

Unit III

Thermal management of DEW, Power management of DEW

Unit IV

Operational requirements of directed energy systems, platform integration.

Unit V

Weapon effectiveness under different operating conditions

Unit VI

Overview of internationally developed systems (Airborne Laser Laboratory, Airborne Laser, Tactical High Energy Laser, Advanced Tactical Laser, and Space-Based Laser programs

Suggested Books:

- 1. "Directed-Energy Beam Weapons Hardcover", by Bahman Zohuri.
- 2. "Directed Energy Weapons: Physics of High Energy Lasers (HEL)", by Bahman Zohuri.
- 3. "An Introduction to Laser Weapon Systems", by Glen P. Perram.
- 4. "Effects of Directed Energy Weapons", by Philip Nielsen.
- 5. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN* questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-DET-L01	DIRECTED ENERGY LASER SOURCES LAB							
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
0	0	4	2	60	40	100	3	

List of Experiments

- 1. Optical resonator design and experimental evaluation
- 2. Optics Alignment using He-Ne laser
- 3. Measurement of Laser Power, Beam Width, Spatial Profile, Wavelength
- 4. Measurement of Laser Beam Parameter (M2)
- 5. Optics Surface Quality test using Interferometer
- 6. Optical Coating Reflectivity, Transmission Test
- 7. Characterization of Microwave sources

More experiments may be planned in discussion with the concern DRDO Lab.

DT-DET-L02	BEAM CONTROL TECHNOLOGY, TARGET ACQUISITION, BEAM POINTING AND TRACKING LAB							
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
0	0	4	2	60	40	100	3	

List of Experiments

Lab experiments will be added in consultation with DRDO labs considering the available facilities

Semester -II

MASTER OF TECHNOLOGY
IN
DEFENCE TECHNOLOGY (w. e. f. 2021-22)
SPECIALIZATION: HIGH ENERGY MATERIALS
TECHNOLOGY

DT-HEM-01	Hig	jh Energy M	/laterials N	lodeling &	Simulation	on			
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time		
				Test	Test		(Hrs.)		
4	0	0 0 4 60 40 100 3							
Objective	The main objective of the course is to provide knowledge to the students about high- energy materials from theoretical and practical standpoints. This course also includes detailed formulations and reactions presented with thermochemical calculations to aid understanding to the theory and chemical types of explosives. Course Outcomes								
CO 1	Students will be able				ag compotiti	ive and alt	ornativo		
001	high energy materia		e tile basis i	oi evaluatii	ig competiti	ive and and	ernative		
CO 2		Students will be able to understand the theory and methods of simulations and applications of high energy materials.							
CO 3	Students will be abl simulation of high en	le to underst	tand the usa						

UNIT 1

Understanding of high energy materials from theoretical and practical standpoints, to formulate the bases for evaluating competitive and alternative high energy material systems.

Unit 2

High energy materials physics and chemistry.

Unit 3

Molecular energetic of the high energy materials molecule including molecular orbital and valence bonding and resonance stabilization.

Unit 4

Concepts and practical implications of sensitivity and energy potential, oxygen balance and thermodynamic, reaction rate theory, hot-spot theory, shock physics and detonation theory.

Unit 5

Tools for high energy materials modeling & simulation.

Unit 6

Overview high energy materials modeling using FEM technique.

References / Suggested Books:

- 1. "Chemistry of High-Energy Materials", by Thomas M. Klapötke, De Gruyter, 2012
- 2. "Shock Waves Science and Technology Library, Detonation Dynamics- Vol. 6," by Zhang F. Publisher: Springer.
- 3. "Physics of Shock Waves" by Zel'dovich & Raizer.
- 4. "The Chemistry of Explosives", by Jacqueline Akhavan 2011
- 5. "High energy materials modeling & simulation", by Andreoni Wanda, Yip Sid-ney. Publisher: Springer, 2020.
- 6. Literature / books suggested by respective course Lecturers

carries 12 Mark					
The student will a SIX questions b Marks.	attempt a total of SEI y selecting only on	/EN questions, inc e question from	luding compulson each unit and	ry Q. No. 1 and rei each question c a	naining arries 8

	LOIALIZATION.I								
DT-HEM-02		wunit	ions and Ta	arget kesp	onse				
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time		
				Test	Test		(Hrs.)		
4	0	0	4	60	40	100	3		
Objective	The main objective of the course is to provide knowledge to students about warheads, ammunition and armour design, and the underlying wound ballistics and human vulnerability. The course will also cover characterization of high energy materials for different properties.								
		Course	Outcome	S					
CO 1	Students will be abl	e to design w	arheads, am	munition ar	nd armours.				
CO 2	Students will be able to understand fragmentation theory, small arms and cannon ammunition.								
CO 3	Students will be ab	le to understa	and the char	acterization	of high ene	rgy materia	als.		

Unit 1

Introduction to warheads and ammunition, Introduction to armour design

Unit 2

Wound ballistics and human vulnerability, Fragmentation theory and warheads, Small arms and cannon ammunition, Shell and projectile design

Unit 3

Target penetration and shock events covering subsonic to hydrodynamic regimes, Shaped charge and Explosively Formed Penetrator (EFP) warhead design, Kinetic Energy (KE) ammunition and penetrator design

Unit 4

Mine threat and damage mechanisms, Complex armour, spacing, obliquity, disposition and failure mechanisms

Unit 5

Characterization and testing of materials for high strain rate loading

Unit 6

Blast effects, blast-structure interactions including internal detonations, Terminal ballistics demonstration

References / Suggested Books:

- 1. "A Comprehensive Guide to Munitions: Bullets, Bombs, Artillery, Mines, Missiles & Explosives" 2016", by Paul F. Kisak.
- 2. "Ammunition: Small Arms, Grenades and Projected Munitions",by Ian V. Hogg. Publisher: Greenhill Books.
- 3. "MILITARY SMALL ARMS: Design Principles and Operating", by Derek Allsop
- 4. "Armour: Materials, Theory, and Design", by Paul J. Hazell. Publisher: CRC Press, 2015.

5. Literature / books suggested by respective course Lecturers. Note: The paper will have a total of THIRTEEN questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). Q. No. 1 carries 12 Marks. The student will attempt a total of **SEVEN** questions, including compulsory Q. No. 1 and **remaining** SIX questions by selecting only one question from each unit and each question carries 8 Marks.

DT-HEM-03	Manuf	acturing ar	nd Materia	ls Propert	ies of Expl	osives				
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time			
				Test	Test		(Hrs.)			
4	0	0	4	60	40	100	3			
Objective	The main objective of the course is to provide knowledge to students about synthesis of									
	nigh energy materials such as Lead Azide/Styphnate, TNT, RDX, NC, NG etc. Various									
	properties of high energy materials, filling processes of high energy materials, plant									
	design, and safety is	design, and safety issues will be covered.								
		Course	e Outcome	s						
CO 1	Students will be abl	e to understa	nd the basic	chemistry	of nitration	for the syn	thesis of			
	high energy materia	l molecules								
CO 2	Students will be	able to ha	ve environi	mental awa	areness En	gineering	of the			
	manufacturing of hi	gh energy ma	aterials.							
CO 3	Students will be abl	e to understa	nd physics o	f high energ	y materials:	Detonation	n theory,			
	Shocks physics, Exp	losives train.								

Unit 1

Chemistry of the synthesis of high energy material molecules: Basic chemistry of nitration,

Unit 2

Synthesis examples of Lead Azide/Styphnate, TNT, RDX, NC, NG, Basic stability/compatibility

Unit 3

Material science of high energy materials: Basic hazard/performance properties, Crystal properties, Binder properties, Mechanical properties,

Unit 4

Environmental awareness, Engineering of the manufacturing of high energy materials

Unit 5

Filling processes of high energy materials, Plant design, safety, Quality control

Unit 6

Physics of high energy materials: Detonation theory, Shocks physics, Explosives train.

References / Suggested Books:

- 1. "Detonation: Theory and Experiment", by Wildon Fickett. Publisher: Dover Publications Inc.
- 2. "Organic Chemistry of Explosives", Jai Prakash Agrawal, Robert Dale Hodgson, Publisher: Wiley and sons, 2006
- 3. "High explosives and propellants", by S. Fordham.
- 4. "Demystifying Explosives: Concepts in High Energy Materials", by Sethurama Sharma Venugopalan.
- 5. "Chemistry and Physics of Energetic Materials", by Bulusu, S.N. Publisher: Springer.
- 6. "High Energy Materials: Propellants, Explosives and Pyrotechnics", by Jai Prakash Agrawal. Publisher: Wiley.

Note: The shall be 0 carries 12	paper will have a total of BJECTIVE Type and have ! Marks .	THIRTEEN questions. contents from the en	Question No. 1, which tire syllabus (all SIX L	is compulsory, Inits). Q. No. 1
The studer SIX quest Marks.	nt will attempt a total of SE ions by selecting only on	VEN questions, including the question from each	ng compulsory Q. No. 1 a h unit and each ques	and remaining stion carries 8

DT-HEM-L01	High Energy Materials Modeling & Simulation Lab							
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time	
				Test	Test		(Hrs.)	
0	0	2	2	60	40	100	3	

List of Experiments

Lab experiments will be added in consultation with DRDO labs considering the available facilities

DT-HEM-L02	Munitions and Target Response Lab						
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time
				Test	Test		(Hrs.)
0	0	2	2	60	40	100	3

List of Experiments

Lab experiments will be added in consultation with DRDO labs consi	iderina tr	ne available	facilities
--	------------	--------------	------------

Semester 2, Elective-III Courses (For All Specializations)

DT-EL3-01			ROBOTI	CS (MSS, M	CC)			
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
3	0	0	3	60	40	100	3	
Objective	To provide learning on the basic concepts of robotics by exposing students to a broad range of topics with emphasis on basics of manipulators, coordinate transformation and kinematics, trajectory planning, control techniques, sensors and devices, robot applications and economics analysis.							
		Course	e Outcomes					
CO 1	Students w kinematics	ill be able to of robots.	use matrix	algebra and	Lie algebra	for compu	iting the	
CO 2		ill be able to c d parallel rob		forward kine	ematics and	inverse kin	ematics	
CO 3	Students w	ill be able to	calculate the	Jacobian fo	r serial and	parallel rol	oot.	
CO 4	Students w	ill be able to	do the path p	olanning for	a robotic sy	rstem.		
CO 5	Students w systems.	rill be able to	use softwa	re tools for	analysis and	d design of	robotic	

Unit I

Fundamentals of land-based robotic systems covering the areas of locomotion, manipulation, grasping, sensory perception, and teleoperation

Unit II

Kinematics, dynamics, manipulability, motion/force control, real-time programming, controller architecture, motion planning, navigation, and sensor integration, Control system design

Unit III

Transformation of coordinates, Kinematics and inverse kinematics, Jacobians

Unit IV

Modelling Control, Proportional (P), Proportional-Integral (PI), Proportional-Integral-Derivative (PID) and Model Based Predictive Controller (MPC)

Unit V

 $Feedback\ Control\ System,\ Motion\ and\ path\ planning,\ Collision\ avoidance\ and\ navigation$

Unit VI

Fundamental of AI, Programming methods for robotics, Human-Robot interaction

- 1. Textbook: Introduction to Robotics by S.K. Saha (Tata McGraw-Hill, New Delhi, India 2008, 1st Reprint 2009)
- 2. "Introduction to Robitcs: Mechanics and Control", by Craig, J.J. Publisher: Pear-son, Delhi.
- 3. "Fundamentals of Robotics: Analysis and Control", by Schilling Robert J. Pub-lisher: Prentice-Hall, 1990.
- 4. "An Introduction to Robotics Analysis, Systems, Applications", by Niku Saeed B. Publisher: Prentice-Hall, 2001.
- 5. Stuart Russell and Peter Norvig, Publisher: Prentice Hall
- 6. Literature / books suggested by respective course Lecturers.

carries 12 Ma	rks.				
The student wi SIX questions Marks.	Il attempt a total of a by selecting only	SEVEN questions, one question fi	including compu com each unit a	ilsory Q. No. 1 and Ind each question	remaining n carries &

DT-EL3-02		Eľ	MI/EMC IN	MILITARY S	SYSTEMS			
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
3	0	0	3	60	40	100	3	
Objective	To provide learning on the basic concepts of EMI/EMC design, techniques for prevention of electronic equipment through good EMI/EMC design techniques – grounding, shielding, cable management, and power interface design, troubleshooting techniques, EMI/EMC standards.							
		Course	e Outcomes					
CO 1	Students w equipment	ill be able to	understand	d the conce	pt of EMI /	EMC prote	ection of	
CO 2	Students w in military	ill be able to systems.	Identify and	l prevent th	e common E	EMI/EMC p	roblems	
CO 3		vill be able to IC specification		d the Desig	n impact (b	y requirer	ment) of	
CO 4	Students w techniques	vill be able to	understan	d EMI/EMC	troublesho	oting tips	and	
CO 5	Students w	ill be able to I	earn genera	ite EMI/EMO	C requireme	nts docum	ent.	

Unit I

Basic Concepts: Definition of EMI/EMC and EMP, Classification of EMI/EMC, Sources of EMI, EMI coupling modes, ESD Phenomena and effects, Transient phenomena and suppression

Unit II

MC requirements for electronic systems, Non-ideal Behaviours of Components; EMI Measurements: Basic principles of EMI measurements, EMI measuring instruments

Unit III

EMI Control Methods: Conducted and radiated emissions and susceptibility, Crosstalk and shielding, Grounding, Bonding, Filtering, EMI gasket, Isolation transformer, opto isolator; Faraday cage, isolation of shelters

Unit IV

EMC Standard and Regulations: National and Intentional standardizing organizations, Frequency assignment, Spectrum conversation

Unit V

EMC Design and Interconnection Techniques: Cable routing and connection, Component selection and mounting, PCB design (Trace routing, Impedance control, decoupling, Zoning and grounding)

Unit VI

EMC analysis and detection techniques: Using tools for signal integrity analysis, Study eye diagrams for communication systems

- 1. "EMI/EMC Computational Modeling Handbook", by brucearchambeault, Omar M. Ramahi, et al.
- 2. "EMI/EMC Computational Modeling Handbook: 630 (The Springer International Series in Engineering and Computer Science)", by Bruce R. Archambeault, Omar M. Ramahi, et al.

- 3. "A practical approach to electromagnetic compatibility", by Chetan Kathalay
- 4. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1 carries 12 Marks**.

DT-EL3-03		DEFENCE E	LECTRO-OP	TICS AND IN	MAGING SY	STEMS	
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
3	0	0	3	60	40	100	3
Objective	To introduce the principles of wide range of current and future electro-optic and imaging devices. Course will also enable students to light on application of electro optics and imaging system in defence application. Course Outcomes						
CO 1		ill be able to u ic devices and		he technolog	gy and princ	iples under	pinning
CO 2		ill be able to tion problem		knowledge t	o practical e	lectro-opti	c design
CO 3	Students w design.	ill be able to	understand	the trade-of	fs in electro	-optic syste	ems

Unit I

Principles of radiometry, The human eye, Visible band optical sighting systems

Unit II

Camera systems, Image intensifiers, Missile seekers

Unit III

Electro-optic countermeasures

Unit IV

Thermal imagers, II cameras, Hyper-spectral imaging, Digital image processing

Unit V

EO sensors for Lasers and laser DEW

Unit VI

Electro-optic protection measures

Suggested Books:

- 1. "Systems engineering analysis of electro-optical and Infra red system", by William Wolfgang Arrasmith.
- 2. "Introduction to Infrared and Electro-Optical Systems", by Author Ronald G. Driggers Ronald G. Driggers.
- 3. "Handbook of Defence Electronics and Optronics: Fundamentals, Technologies and Systems", by Author(s): Anil K. Maini
- 4. "Building Electro-Optical Systems: Making It all Work", by Author Philip C. D. Hobbs.
- 5. "Electro-Optical Instrumentation: Sensing and Measuring with Lasers", by Author Silvano Donati.
- 6. "Electro-optical systems design, Analysis and testing", by Author Michael C. Dudzik.
- 7. Literature / books suggested by respective course Lecturers...

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

Marks.	nly one question from each unit and each question ca			

DT-EL3-04		STRUCTU	RAL DYNAN	/IICS AND A	ERO-ELAST	ICITY	
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
3	0	0	3	60	40	100	3
Objective	To provide learning on the mathematics behind the computational analysis, Different methods of analysis, Mathematical modeling of the various phenomena related to vibration analysis, various failure criteria and theory related to elastic fracture						
		Course	e Outcomes	i			
CO 1	Students will be able to understand vibrations and fluid dynamics behind aerospace system.						hind the
CO 2	in aerospad						
CO 3	Students w methods.	vill be able to	do the syst	em dynami	c analysis u	sing finite	element

Unit I

Principles and methods of computational structural dynamics and vibration analysis

Unit II

Introduction to dynamic analysis using the finite element method, Calculation of modal parameters

Unit III

System dynamic response via mode superposition, frequency response, model reduction, and structural synthesis techniques, Fatigue analysis

Unit IV

Introduction to aero-elasticity, Aerodynamic Loading, Bending Moment, Sectional properties of Aerofoil, V-n Diagram

Unit V

Basic theory of linear elastic fracture mechanics; strain energy release rate

Unit VI

Applications to delamination crack growth in polymer composite laminates, Damage tolerance issues in composites

- 1. "Elements of vibration analysis", by Leonard Meirovitch. Publisher: McGraw-Hill Inc., US; 2nd edition (1 March 1986)
- 2. "Finite Element Analysis Theory And Application With ANSYS", by Moaveni Publisher: Pearson Education; 3rd edition (1 January 2011)
- 3. "Mechanical Vibrations | SI Edition | Sixth Edition", by Singiresu S. Rao. Publisher: Pearson
- 4. "Elements of Fracture Mechanics", by Prashant Kumar. Publisher : McGraw Hill Education.
- 5. "Introduction to Structural Dynamics and Aeroelasticity", by Dewey H. Hodges and G. Alvin Pierce. Publisher: Cambridge University Press.
- 6. Literature / books suggested by respective course Lecturers.

carries 12 Ma	arks.				
The student w SIX questions Marks .	ill attempt a total of s by selecting only	SEVEN question one question	<i>ns</i> , including cor from each un	mpulsory Q. No. 1 it and each qua	l and <i>remaining</i> estion carries 8

DT-EL3-05		SAFETY	, HEALTH &	HAZARD N	1ANAGEME	NT		
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
3	0	0	3	60	40	100	3	
Objective	To inculcate a holistic approach towards safety health and hazard management The course will provide understanding on the safety & hazard management of the toxic chemicals, gases, explosives etc. Course Outcomes							
CO 1	Students w hazard mar	ill be able to nagement.	understand	chemical sa	fety standar	ds, fire safe	ety,	
CO 2	Students w	ill be able to I	nandle toxic	liquids & ga	ises, explosi	ves.		
CO 3	Students w environme	vill be able to nt safety.	o understan	d the NBC	warfare saf	ety, health	&	

Unit I

Chemical Safety: Standards and regulations of chemical safety in Industries or Laboratories, Storage of hazardous chemicals, Compatibility and classification codes, Chemical risk analysis and management

Unit II

Fire triangle and Handling of Toxic, Industrial Gases

Unit III

Hazard Management: HAZOP and HAZAN techniques, Hazard in manufacture, Hazard prevention measures, Disposal of hazardous materials

Unit IV

Warfare: Classifications of explosives based on hazards, Nuclear, biological and chemical warfare safety

Unit V

Health: Assessment of human factors, Health & Environment safety

Unit VI

Nano materials safety (Toxicology study)

- 1. "Occupational Health and Safety Management A Practical Approach", by Charles D. Reese. Publisher: CRC Press.
- 2. "Occupational and Environmental Safety and Health", Arezes, P.M., Baptista, J.S., Barroso, M.P., Carneiro, P., Cordeiro, P., Costa, N., Melo, R.B., Abreu dos Santos Baptista, J.M., Perestrelo, G. (Eds.). Publisher: Springers, 2019
- 3. "Handbook of Occupational Safety and Health", by S. Z. Mansdorf. Publisher: Wiley.
- 4. "Institution of Chemical Engineers", by Trevor Kletz Hazop and Hazan
- 5. "Handbook Of Toxicology Of Chemical Warfare Agents", by Ramesh C. Gupta 2nd Edition Elsevier, 2015
- 6. "Nanomaterials Safety Toxicity And Health Hazards", by Shyamasree Ghosh De Gruyter.
- 7. "Hazardous Chemicals Handbook", by Phillip Carson, Clive Mumford Butterworth-Heinemann.

8. Literature / books suggested by respective course Lecturers. Note: The paper will have a total of THIRTEEN questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). Q. No. 1 carries 12 Marks. The student will attempt a total of **SEVEN** questions, including compulsory Q. No. 1 and **remaining** SIX questions by selecting only one question from each unit and each question carries 8 Marks.

DT-EL3-06	FUND <i>F</i>	MENTAL OF	TELEMETR	Y, TELECON	1M AND TR	ANSPOND	ER
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)
3	0	0	3	60	40	100	3
Objective	telemetry,	knowledge modulation t ation systems	echniques, t				
		Course	e Outcomes	;			
CO 1	Students will be able to understand Satellite communication and related technologies.						ated
CO 2		rill be able to processing, ar				f satellites	through
CO 3		ill be able to xact location nals.					
CO 3	through th	rill be able to e reception, d from the gro	processing,				

Unit I

Fundamental of satellite communication, different modulation and multiplexing Schemes

Unit II

Satellite Telemetry, Tracking and Tele-command, Multiple Access Techniques Telemetry, Data Transmission, Methods of Modulation, Time Division and Frequency Division Multiplexing, FDMA, TDMA, CDMA and DAMA, Coding Schemes

Unit III

Satellite Packet Communications, Tracking and Telemetry

Unit IV

Doppler and Electro-Optical methods of tracking, Airborne Missile

Unit V

Signal Processing: Processing of Signal, Data Acquisition and Reduction

Unit VI

Introduction to satellite communication, transponders

- 1. "Spacecraft TT&C and Information Transmission Theory and Technologies", by, Jiaxing Liu. Publisher: Springer, 2014
- 2. "Introduction to PCM Telemetering Systems", by Stephen Horan. Publisher: CRC Press
- 3. "Satellite Communications Systems: Systems, Techniques and Technology", by Gerard Maral, Michel Bousquet, Zhili Sun. Publisher: Wiley, 2020
- 4. "Satellite Communications", by Timothy Pratt, Jeremy E. Allnutt, 3rd Edition Publisher : Wiley.
- 5. "Principles of Modern Communication Systems", by Samuel O. Agbo , Matthew N. O. Sadiku 2017
- 6. Literature / books suggested by respective course Lecturers.

carries 12 Ma	rks.				
The student wi SIX questions Marks.	Il attempt a total of a by selecting only	SEVEN questions, one question fi	including compu com each unit a	ilsory Q. No. 1 and Ind each question	remaining n carries &

DT-EL3-07	JAMMING AND ECM/ECCM TECHNOLOGIES								
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
3	0	0	3	60	40	100	3		
Objective	To provide learning on the concept of jamming, frequency matching, continuous interference, factors affecting ECM, basic principle of noise jamming, different types of jamming systems, ECM techniques, and ECCM.								
Course Outcomes									
CO 1	Students will be able to understand the concept of electronic attacks								
CO 2	Students will be able to understand the principles and the practical applications of current and evolving electronic jamming technology.								
CO 3	Students will be able to understand the concept of determination of the satellite's exact location through the reception, processing, and transmitting of ranging signals.								
CO 4		rill be able to nd counter –			ent types of	electronic	counter		

Unit I

Principals of Electronic Attack (EA), Jamming-to-Signal Ratio, Jamming Types Burn-Through, Cover Jamming, Range Deceptive Jamming, Inverse Gain Jamming

Unit II

Repeater Jamming Equations, Noise Jamming vs. Deception, Repeater vs. Transponder, Side lobe Jamming vs. Main lobe Jamming

Unit III

Stand-Off Jamming, Escort Jamming, Self-Protection Jamming, ECM techniques, On-Board ECM Systems, Off-Board ECM Systems

Unit IV

Infrared Countermeasures (IRCM), Off-Board ECM Systems, Communications Countermeasures (COM-ECM), Electro-Optic Counter Measure (EOCM) Systems

Unit V

Airborne Tactical Jamming System, Shipboard Self-Defense System, EA/Susceptibility against Weapon Systems. Search Radar Counter-Countermeasures, Tracking Radar

Unit VI

Counter-Countermeasures, Infrared Counter-Countermeasures, Communications Counter-Countermeasures

- 1. "Electronic Countermeasure and Electronic Counter-Countermeasure", by Bahman Zohuri.
- 2. "Fundamentals of Electronic Warfare 2001", by S.A. Vakin, L.N. Shustov, R.H. Dunwell.
- 3. "Communications, Radar and Electronic Warfare by Adrian Graham 2010
- 4. "Electronic Warfare & Radar Systems Engineering Handbook" 2013, Naval Air Warfare Center Weapons Division.
- 5. "EW 101: A First Course in Electronic Warfare (Artech House Radar Library)", 1st Edition

6. Literature / books suggested by respective course Lecturers. Note: The paper will have a total of THIRTEEN questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). Q. No. 1 carries 12 Marks. The student will attempt a total of **SEVEN** questions, including compulsory Q. No. 1 and **remaining** SIX questions by selecting only one question from each unit and each question carries 8 Marks.

DT-EL3-08	SOFTWARE DEFINED RADIOS								
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
3	0	0	3	60	40	100	3		
Objective	To provide understanding of the fundamental of software defined radios, different aspects of SDRs, practical scenarios along with knowledge of different SDR hardware and software.								
Course Outcomes									
CO 1	Students will be able to understand the concept, application of SDRs								
CO 2	Students will be able to understand of analog RF components as front end block in implementation of SDR.								
CO 3	Students will be able to gain knowledge of digital hardware architectures and its development techniques.								
CO 4	Students will be able to gain knowledge of software development for embedded wireless systems								

Unit I

SDR introduction, major standards, SDR architecture, SDR enablers, advantage /disadvantages, Applications

Unit II

Waveform platform bifurcation, red – black separation, digital modulation- advanced linear and non-linear bandwidth efficient modulations. Bandwidth and power efficiency, peak to average power, error vector magnitude and error probability

Unit III

SDR Hardware, super-heterodyne architecture, homodyne architecture, advantages & disadvantages, Software for SDR, Processing architecture for SDR

Unit IV

RF channels, receiver channel equalization, multiple access techniques Frequency, time and code division techniques as well as carrier sensing, Wireless sensor networks and beam steering in azimuth and elevation, receiver analogue signal processing, receiver digital signal processing

Unit V

Source and channel coding (Source and channel coding, sampling, entropy, data compression, voice coding, block and convolution coding, turbo coding, space-time coding and trellis coding).

Unit VI

Case studies in software radio design, Introduction and a Historical perspective

- 1. "Software Radio, (A modern approach to radio engineering)", by Jeffery H.Reed Publisher: PHI PTR.
- 2. "RF and Digital Signal Processing for Software Defined Radio", by John J. Rouphael. Publisher: Elsevier.
- 3. "Digital Techniques in Frequency Synthesis", by B.G. Golderg. Publisher: McGraw-Hill.
- 4. "Multirate Signal Processing", by N.J. Fliege. Publisher: John Wiley and sons.

5. Literature / books suggested by respective course Lecturers Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL3-09	ADVANCED LIGHTWEIGHT AND COMPOSITE STRUCTURES							
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
3	0	0	3	60	40	100	3	
Objective	To impart thorough knowledge of advanced composite materials, their manufacturing techniques and to develop mathematical models & design structures made of composites. Basic understanding of structures used in airborne systems like missiles and aircrafts& their performance under static and dynamic loading, including crash and bird strike will also be covered. Course Outcomes							
CO 1	Students will be able to understand the design of advanced structures and lightweight materials for aerospace materials							
CO 2	Students will be able to understand the numerical and analytical skills in structural mechanics for both composite and metallic components.							
CO 3	Students will be able to gain knowledge of digital hardware architectures and its development techniques.							
CO 4	Students w	ill be able to	apply knowl	edge to solv	e real engin	eering prob	olems	

Unit I

Review of Strength of Materials, Introduction to Aerospace Materials – Metal Alloys and Fiber Reinforced Composite

Unit II

Introduction to different types of constructions: Monocoque, Semi-Monocoque, Truss, and Corrugated shell

Unit III

Introduction to Aircraft and Missile Structural Components: Spars; Ribs; Stringer; Longerons

Unit IV

Analysis of stress; Analysis of strain

Unit V

Material Constitutive Relations.

Unit VI

Failure Theories; Fatigue theory

- 1. "Composite Structures Safety Management", by Dr. Bjorn Backman. Publisher: Elsevier Science.
- 2. "Composite Structures: Design, Mechanics, Analysis, Manufacturing and Testing", by Manoj Kumar Buragohain. Publisher: CRC Press.
- 3. "Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance", by James Njuguna Woodhead Publishing, 2016
- 4. "Structural and Stress Analysis", by T.H.G. Megson. Publisher: Butterworth-Heinemann.
- 5. Literature / books suggested by respective course Lecturers.

carries 12 M	arks.				
The student w SIX question Marks.	vill attempt a total s by selecting of	of SEVEN quest of one question	ions, including co on from each u	ompulsory Q. No <i>nit and each q</i>	. 1 and <i>remaining</i> uestion carries 8

DT-EL3-10	TEST METHODOLOGIES FOR DEW SYSTEMS (LASERS & MICROWAVE)								
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
3	0	0	3	60	40	100	3		
Objective	To provide learning on the testing requirements, characterization, system performance testing procedures, test setups, safety standards, safety tools of laser and microwave-based DEW systems. Course Outcomes								
CO 1	Students will be able to understand the characterization and testing requirements of DEW systems								
CO 2	Students will be able to carry out the indoors & outdoors system performance testing.								
CO 3	Students will be able to understand the safety issues, safety standards, handling high power sources.								

Unit I

Testing requirements of DEW system, types of testing, laser effect testing on target, system output testing

Unit II

System performance testing, System outdoor test & measurement instruments

Unit III

Laser testing issues, Laser safety, Laser safety standards, laser safety tools

Unit IV

Microwave system testing Impedance measurement, S-Parameters and the Smith Chart

Unit V

Power Measurement, Noise Figure and Phase Noise measurement, Frequency measurements (Spectrum Analysis), Gain Compression and Intermodulation, Network Analysis

Unit VI

Microwave subsystem / system characterization techniques. HPM safety tools, safety standards

Suggested Books:

- 1. "An Introduction to Microwave Measurements", by Ananjan Basu.
- 2. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of **THIRTEEN** questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL3-11		ADVANCED ANALYTICAL TECHNIQUES/LAB TESTING									
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total T Test Test (F									
3	0	0	3	60	40	100	3				
Objective	convention understand	To impart an in-depth knowledge of material characterization by all the conventional well-established techniques used worldwide. The course provides understanding on the material characterization, having main focus on polymeric techniques, chromatography and Spectroscopy.									
		Course	e Outcomes								
CO 1	Students will be able to understand different characterization techniques										
CO 2		ill be able to ganic/inorga				que for a pa	articular				

Unit I

Instrumental Analysis: Qualitative analysis

Unit II

Genesis of instrumental analysis, hyphenated techniques

Unit III

Polymeric Techniques: Rheology Techniques, Molecular weight determination; Thermal Techniques: Thermo Gravimetry (TG), Differential Thermal Analysis (DTA), and Differential Scanning Calorimetry (DSC)

Unit IV

Chromatographic Techniques: Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), Thin Layer Chromatography (TLC), Ion chromatography

Unit V

Spectroscopy: Ultraviolet-Visible Spectroscopy UV-VIS, Infra-Red spectroscopy (IR), Nuclear Magnetic Resonance (NMR), Mass spectroscopy, Atomic Absorption Spectroscopy (AAS)

Unit VI

XRD and SEM techniques, Sensitivity studies

- 1. "Fundamentals of molecular spectroscopy" by C. N. Banwell. Publisher: McGraw Hills.
- 2. "Introduction to Spectroscopy" by Donald L. Pavia, Gary M. Lampman, and George S. Kriz. Publisher: Cengage Learning, 2014.
- 3. "Chromatography: Concepts and Contrasts" by James M. Miller. Publisher: Wiley.
- 4. "Chromatography: Principles and Instrumentation", by Mark F. Vitha. Publisher: Wiley.
- 5. "Elements of X-Ray Diffraction" by B.D. Cullity Deceased, S.R. Stock. Publisher: Pearson.
- 6. "Electron Microscopy: Principles and Fundamentals" by S. Amelinckx, Dirk van Dyck, J. van Landuyt, Gustaaf van Tendeloo. Publisher: Wiley.
- 7. "Polymer Characterization: Physical Techniques", by Dan Campbell, Richard A. Pethrick, Jim R. White 2nd Edition. Publisher CRC Press.
- 8. Literature / books suggested by respective course Lecturers.

carries 12 M	arks.				
The student w SIX question . Marks .	vill attempt a total o s by selecting on	of SEVEN question Iy one question	ons, including com on from each un	mpulsory Q. No. 1 <i>it and each que</i>	and remaining estion carries 8

DT-EL3-12		5	SONAR SYST	TEM ENGIN	EERING				
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
3	0	0	3	60	40	100	3		
Objective	To provide an in-depth understanding of underwater acoustic principles, sonar technology and applications, hardware and software design engineers new to sonar system design.								
Course Outcomes									
CO 1	Students w	ill be able to l	know the ba	sic building	blocks of a r	adar syste	m		
CO 2	Students w that are use	ill be able to h ed.	ave an in-de	epth knowle	dge on differ	ent types o	fsignals		
CO 3		ill be able to nal processir		the ambigu	ity function	and its sigr	nificance		
CO 4		ill be able to le of operation		hysics behir	nd sound pr	opagation	in water		
CO 5	Students w application	ill be able to a s	apply the kno	owledge acq	uired in this	course in r	eal time		

Unit I

Mathematical development and discussion of fundamental principles that pertain to the design and operation of passive and active sonar systems critical to naval operation.

Unit II

Topics from complex aperture theory, array theory

Unit III

Signal processing

Unit IV

Introduction to undersea warfare and engineering acoustics

Unit V

Principles of optimal signal processing techniques for detecting signals in noise, maximum likelihood, Bayes risk

Unit VI

Neyman-Pearson and min-max criteria and calculations of their associated error probabilities (ROC curves)

- 1. "Fundamentals of Radar, Sonar and Navigation Engineering", by K. K. Sharma.
- 2. "Principles of Modern Radar: Advanced techniques", by editor William L. Mel-vin.
- 3. "An Introduction to Sonar Systems Engineering", by Lawrence J. Ziomek.
- 4. "Sonar for practicing engineers", by A. D. Waite.
- 5. "Underwater Acoustics: Analysis, Design and Performance of Sonar", by Rich-ard P. Hodges.
- 6. Literature / books suggested by respective course Lecturers.

carries 12 Ma	irks.				
The student w SIX questions Marks.	ill attempt a total of by selecting only	SEVEN questions one question f	, including compu rom each unit a	lsory Q. No. 1 and nd each question	remaining carries 8

Semester 2, Elective-IV Courses (For All Specializations)

DT-EL4-01		UNN	/IANNED AE	RIAL VEHIC	LE DESIGN					
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time Test Test (Hrs.								
3	0	0	3	60	40	100	3			
Objective	To provide the understanding of the initial designing and sizing process for rapidly growing fixed – wing UAV technology, integrated with its performance and stability analysis, air safety issues, airworthiness and prototype testing.									
	Course Outcomes									
CO 1	Students w of UAV.	ill be able to u	nderstand tl	ne design re	quirements,	design par	ameters			
CO 2	Students w stability an	ill be able to alysis.	perform th	e aerodynai	mic analysis	, performa	nce and			
CO 3	Students will be able to understand the performance testing of the UAVs.									
CO 4	Students w of UAV.	ill be able to	understand	the airwortl	niness and s	afety requi	rements			

Unit I

UAV design Requirements, design parameters, design algorithms, Certification approaches: aircrafts and UAVs. Airworthiness of aircrafts and UAVs

Unit II

Air safety issues. Handling qualities. Manoeuvrability requirements. Aircraft design; UAV system design. UAV system identification

Unit III

UAV aerodynamics, structures and propulsion, performance and stability analysis

Unit IV

UAV project life cycles. Stages of Aircraft design. Initial sizing: aircrafts and of UAVs

Unit V

Ground control systems. Ground and flight testing of UAVs. UAV guidance and Navigation. Design for reliability

Unit VI

Wind Tunnel Testing, Aerodynamic Characterization through Wind Tunnel Testing

- 1. "Introduction to Flight", by John D. Anderson
- 2. "Performance, Stability, Dynamics, and Control of Airplanes", by Bandu N. Pamadi.
- 3. "Aircraft performance and design", by John D. Anderson.
- 4. "Unmanned Aircraft Design A review of fundamentals", by Mohammad H. Sadraey.
- 5. "Aircraft Design: A Conceptual Approach", by Daniel P. Raymer.
- 6. "Unmanned Aircraft Systems: UAVs Design Development and Deployment", by Reg Austin.
- 7. "Small Unmanned Fixed-wing Aircraft Design: A Practical Approach", by Andrew J. Keane and James P. Scanlan.
- 8. Literature / books suggested by respective course Lecturers.

carries 12 Ma	arks.				
The student was six questions Marks.	rill attempt a total of s s by selecting only	SEVEN questions, one question fr	including compu om each unit a	lsory Q. No. 1 and nd each question	remaining n carries 8

DT-EL4-02		NAVAL	OCEAN AN	ALYSIS AND	PREDICTIO	ON		
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)	
3	0	0	3	60	40	100	3	
Objective	To provide understanding of the science and art of Naval Ocean. They will learn methods of analysis of ocean data, to model Naval Ocean, to generate global ocean circulation prediction system, Shallow Water Analysis and Forecast System (SWAFS).							
		Cours	e Outcomes					
CO 1	Students w prediction	ill be able to program	understand	and develor	the Navy O	cean mode	ling and	
CO 2	Students will be able to understand the need to evaluate ocean models and prediction systems for operational and tactical applications							
CO 3	Students w coastal oce	ill be able to u an	ınderstand a	nd predict e	nvironment	alconditio	ns in the	

Unit I

Advanced knowledge of the Indian Navy Ocean analysis and prediction systems

Unit II

Naval Ocean Modeling Program (NOMP), Naval Ocean data systems

Unit III

Atmospheric forcing systems, data assimilation systems

Unit IV

Optimal Thermal Interpolation System (OTIS), Thermal Ocean Prediction Systems (TOPS)

Unit V

Fundamental concepts in turbulence. The atmospheric planetary boundary layer, including surface layer, and bulk formula for estimating air-sea fluxes

Unit VI

The global ocean circulation prediction system, Shallow Water Analysis and Forecast System (SWAFS), Knowledge of ocean eddies

Suggested Books:

- 1. Indian Navy: Ocean of opportunities (Defence Series Books) Author: by PRANAV ZOPE
- 2. Elements of Ocean Engineering, Author Robert E. Randall
- 3. Ocean Modelling for Beginners Using Open-Source Software. Author Jochen Kaempf.
- 4. Literature / books suggested by respective course Lecturers

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL4-03	MO	DELING & SI	MULATION	OF LASER I	MATTER IN	TERACTIO	V		
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time Test Test (Hrs.							
3	0	0	3	60	40	100	3		
Objective	To provide understanding on the high-power laser beam interaction with metals and composite materials, physics-based models for the lethality modeling, damage mechanism & damage threshold measurement techniques and performance evaluation of high-power laser systems. Course Outcomes								
CO 1	Students w	ill be able to ı	understand	of the laser i	matter inter	action			
CO 2		ill be able to etals and com		sics-based r	model for ev	aluation of	effect of		
CO 3	Students will be able to understand the laser parameter measurement techniques								
CO 4	Students w	ill be able to a	analyse the p	performance	e of high-pov	wer laser s	ystems		

Unit I

Laser beam characteristics, Laser lethality modeling & simulation with metal targets & composite materials

Unit II

Physics based models for vulnerability assessment, Effect of laser on metals & composite materials.

Unit III

Measurement and Characterization of Damage Thresholds, Mechanisms of Damage, Exposure Limits and Their Interpretation

Unit IV

Analysis Tools for the Estimation of Hazards, Laser parameters measurement techniques

Unit V

Tools to analyze and predict Laser System performance under different conditions like land, sea air, etc.

Unit VI

Introduction of full-scale end to end modeling of laser system performance

Suggested Books:

- 1. "High Power Laser-Matter Interaction", by Mulser, Peter, Bauer, Dieter. Publisher : Springer.
- 2. Literature / books suggested by respective course Lecturers

Marks.		ach unit and eacl	

DT-EL4-04		COMPUTATIONAL AERODYNAMICS									
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Tin Test Test (Hr									
3	0	0	3	60	40	100	3				
Objective	for solving	To provide learning on the computational aerodynamics, numerical methods for solving systems of equations, numerical modelling of fluids, CFD analysis, turbulence modelling. Course Outcomes									
CO 1		vill be able to alysis, numer			analysis, flu	id mechan	ics, heat				
CO 2	Students w	Students will be able to generate numerical model related to fluid dynamics									
CO 3	Students w	ill be able to	do the pre ar	nd post prod	cessing of CF	D analysis					

Unit I

Introduction to fluid mechanics & heat transfer

Unit II

Introduction to numerical analysis, Discretisation approaches: finite difference, finite volume, finite element and spectral methods

Unit III

Numerical methods for algebraic equations/systems of equations, Numerical schemes for hyperbolic, parabolic and elliptic systems and for fluid dynamics

Unit IV

CFD analysis

Unit V

 $Numerical\ modeling\ of\ compressible\ \&\ in\text{-}compressible\ flow,\ turbulence\ modeling}$

Unit VI

Grid generation/CAD, data analysis and uncertainties

Suggested Books:

- 1. "A Textbook of Heat Transfer Paperback", by S.P. Sukhatme. Publisher: Univer-sities Press.
- 2. "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", by H. Versteeg. Publisher: Pearson.
- 3. "Computational Fluid Dynamics the Basics with Applications", by John D. An-derson, Jr. Publisher: McGraw Hill Education.
- 4. "Fluid Mechanics: Volume 2: Foundations and Applications of Mechanics (Cambridge-iisc)", by C. S. Jog. Publisher: Cambridge University Press; 3rd edi-tion.
- 5. "Numerical Modeling and Computer Simulation", Edited by DraganCvetković, publisher intechopen.
- 6. Literature / books suggested by respective course Lecturers

The student w SIX questions Marks.	ill attempt a total o by selecting onl	f SEVEN question y one question	ons, including co on from each ur	mpulsory Q. No. nit and each qu	1 and remainin g estion carries 8

DT-EL4-05		LAUNCH VEHICLE DESIGN & ANALYSIS									
Lecture	Tutorial	TutorialPracticalCreditsMajorMinorTotalTimeTestTest(Hrs.)									
3	0	0	3	60	40	100	3				
Objective		To provide learning on the launch vehicle design and analysis, components and subsystems of the launch vehicle, propulsion systems.									
Course Outcomes											
CO 1	Students w functioning	rill be able to	understand	the launch	vehicle req	uirements	, its				
CO 2	Students w	Students will be able to design and analysis of launch vehicles									
CO 3	Students w vehicles	vill be able t	o understan	d the prop	ellant requi	rement fo	r launch				

Unit I

Introduction to propulsion for launch vehicles, beginning with mission energy requirements and an overview of current and proposed launch propulsion devices

Unit II

Performance analysis, operating characteristics and propellant selection criteria for air breathing and solid

Unit III

Liquid and nuclear rocket motor propulsion systems

Unit IV

Advanced cycles and concepts are presented. Design of components and subsystems

Unit V

FE modelling: Idealization, Discretization, Meshing and Post Processing

Unit VI

Tracking and controlling errors, Nonlinear analysis in FEM, Launch dynamic analysis

Suggested Books:

- 1. "Design of Rockets and Space Launch Vehicles", by Don Edberg, Willie Costa. Publisher : American Institute of Aeronauti cs & Ast. (August 21, 2020)
- 2. "Modern Engineering for Design of Liquid Propellant Rocket Engines (Progress in Astronautics and Aeronautics)", by Dieter K Huzel, David H Huang. Publish-er: AIAA (American Institute of Aeronautics & Astronautics); Revised, Subse-quent edition.
- 3. "Fundamentals of Astrodynamics 1st Edition", by Roger R. Bate, Donald D. Mueller. Publisher: The American Design Ethic, MIT, USA.
- 4. "Commercial Launch Vehicle Design", by Nickolay Mykola Zosimovych. Pub-lisher: Lap Lambert Academic Publishing.
- 5. "Space Vehicle Design, Second Edition", by Michael D. Griffin and James R. French. Publisher The American Institute of Aeronautics and Astronautics, Inc.
- 6. Literature / books suggested by respective course Lecturers

The student w SIX questions Marks.	ill attempt a total o s by selecting onl	of SEVEN question I y one questio n	ons, including co on from each ui	mpulsory Q. No. nit and each qu	1 and <i>remaining</i> Jestion carries 8

DT-EL4-06		ACQUISITIO	N, TRACKIN	IG & POINT	ING TECHN	OLOGY			
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
3	0	0	3	60	40	100	3		
Objective	To provide learning on the acquisition, tracking & pointing technologies, development of tracking algorithms, design and analysis of tracking systems.								
Course Outcomes									
CO 1	Students will be able to understand the concepts and basic systems requirements tracking systems								
CO 2	Students will be able to understand the system configurations and critical component characteristics required in the design of stabilized pointing and tracking systems, along with an introduction to some more advanced concepts								
CO 3		vill be able to and practice			,	•			

Unit I

Acquisition, tracking, and pointing (ATP) design for military systems

Unit II

Target tracking and related mathematics, SNR requirement, the Johnson criteria, probability of estimation, detection criteria

Unit III

Tracking algorithms, track filters, multi target tracking

Unit IV

Electronic countermeasures against modern target tracking radars

Unit V

Multiplatform-multi-sensor-multi target tracking

Unit VI

Doppler and Electro-Optical methods of tracking

Suggested Books:

- 1. "Acquisition, Tracking, Pointing, and Laser Systems Technologies XXI (Pro-ceedings of SPIE)" 30 October 2007 by Steven L. Chodos (Editor), William E. Thompson (Editor).
- 2. "Acquisition, Tracking, and Pointing, January 2017 In book: Free Space Optical Communication", by Hemani Kaushal, Vk Jain and SubratKar. Publisher: Springer India.
- 3. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of **THIRTEEN** questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL4-07	D	ATA ACQUIS	ITION, TRA	CKING & PC	ST FLIGHT	ANALYSIS			
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
3	0	0	3	60	40	100	3		
Objective		To provide learning on the various aspects of flight trials, measurements & calibration, Generation & analysis of Data.							
Course Outcomes									
CO 1		ill be able to instruments			es used in d	ata acquisi	tion and		
CO 2		Students will be able to understand the Sensors and transducers, Data acquisition hardware and data acquisition software							
CO 3	Students w	ill be able to	carry out po	st flight ana	lysis				

Unit I

Importance of Flight Trials in Missile Development, Facilities, Safety Requirements

Unit II

Methods of Measurement, Introduction to Measuring Instruments: Functional elements of an instrument

Unit III

Static and Dynamic Characteristics, Zero, First and Second order of Instruments and their response

Unit IV

Calibration of Instruments

Unit V

Sensors and Transducers: Passive and Active types, their uses in measurement of acceleration, angle, vibration, pressure, flow and temperature, strain etc.

Unit VI

Methods for post flight data analysis

- 1. "Advances in Missile Guidance, Control, and Estimation: 47 (Automation and Control Engineering)", by editors S.N. Balakrishnan, A. Tsourdos, B.A. White.
- 2. "Calibration Handbook of Measuring Instruments 1st Edition", by Alessandro Brunelli. Publisher: International Society of Automation.
- 3. "Calibration Book", by Janne Kivilaakso, Antero Pitkäkoski Jori Valli, Mike Johnson, Nobuo Inamoto Arja Aukia Masaki Saito. Publisher: VaisalaOyj.
- 4. "Sensors and Transducers", by Patranabis D. Publisher: Prentice Hall India Learning Private Limited.
- 5. "Sensors And Transducers Paperback", by Ian Sinclair. Publisher: Elsevier.
- 6. Literature / books suggested by respective course Lecturers.

carries 12 Ma	rks.				
The student wi SIX questions Marks.	Il attempt a total of a by selecting only	SEVEN questions, one question fi	including compu com each unit a	ilsory Q. No. 1 and Ind each question	remaining n carries &

DT-EL4-08		AIR INDEF	PENDENT PE	ROPULSION	AND BATT	ERIES				
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
3	0	0	3	60	40	100	3			
Objective		To provide learning on the air independent propulsion systems, hybrid electric vehicles, power requirement of the vehicles, energy storage systems								
	Course Outcomes									
CO 1	Students w propulsion	ill be able to systems.	understand	the require	ements of air	rindepend	ent			
CO 2	Students w	Students will be able to design and analysis of hybrid electric drive trains								
CO 3	Students w electric veh	ill be able to nicles	design and a	analysis Ene	rgy storage	systems fo	r hybrid			

Unit I

Introduction to Hybrid Electric Vehicles: Impact of modern drive-trains on energy supplies

Unit II

Hybrid Electric Drive-trains: hybrid traction, various hybrid drive-train topologies, power flow control, fuel efficiency analysis

Unit III

Electric Drive-trains: electric traction, electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis

Unit IV

Electric Propulsion unit: electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Induction Motor drives, Permanent Magnet Motor drives, Switch Reluctance Motor drives, drive system efficiency

Unit V

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles **Unit VI**

Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices

Suggested Books:

- 1. "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", by Chris Mi, M. Abul Masrur. Publisher: Wiley.
- 2. "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition (Power Electronics and Applications Series)", by Mehrdad Ehsani, YiminGao, Ali Emadi, Publisher: Standards media.
- 3. Literature / books suggested by respective course Lecturers.

Marks.		ach unit and eacl	

DT-EL4-09	ADVAI	NCED DIGITA	L MODULA	TION TECH	NOLOGIES &	& STANDA	RDS		
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)		
3	0	0	3	60	40	100	3		
Objective	To provide knowledge on the engineering principles, theories and practices of a digital communication system. The course will deal with the design principles of transmitter and receiver so as to establish a reliable communication link Course Outcomes								
CO 1	Students w	ill be able to	understand	the design d	igital comm	unication s	systems		
CO 2	Students will be able to understand the transmitter, receiver communications system models, voice source coding– pulse code modulation, delta modulation and vocoders								
CO 3	Students w	ill be able to u	understand	the requirer	nent of cellu	lar commu	nication		

Unit I

Design of digital communication system, transmitter and receiver communications system model

Unit II

Voice source coding– pulse code modulation, delta modulation, vocoders

Unit III

Digital modulation – Amplitude-shift, Frequency-shift, Phase-shift, differential phase shift, Quadrature phase-shift, and Minimum-shift keying, Quadrature amplitude modulation

Unit IV

Communications channel - Multipath effects, fading and diversity, models of Eqli and Murphy

Unit V

Receivers – super heterodyne systems, balanced and unbalanced mixers, frequency synthesizers, Link budget analysis

Unit VI

 $Introduction\ to\ cellular\ communication\ -\ CDMA,\ OFDM,\ MIMO,\ Introduction\ to\ digital\ modulation\ standards$

- 1. "Communication Systems", by, Haykin, S. Publisher: John Wiley & Sons.
- 2. "Modern Digital and Analog Communication Systems", by, Lathi, B.P. and Ding, Z. Publisher: Oxford University Press.
- 3. Literature / books suggested by respective course Lecturers.
- 4. "Signal Processing for Wireless Communication Systems", by H. Vincent Poor, Lang Tong, Publisher: Springers.
- 5. "Digital Communication: Fundamentals and Applications", by Sklar, B., and Ray, P.K. Dorling Kindersley.
- 6. "Communication Systems: An Introduction to Signals and Noise in Electrical Communication", by Carlson, A.B., Crilly, P.B. and Rutledge, J.C Publisher: McGraw-Hill.
- 7. "Detection, Estimation and Modulation Theory Part I", by Van Trees, H.L. Pub-lisher : Wiley Inter science.

- 8. "Information Theory, Coding and Cryptography", by Bose, R. Tata McGraw-Hill.
- 9. "Digital Communication", by Barry, J.R., Lee, E.A. and Messerschmitt, D.G.Kluwer.
- 10. "Principles of Digital Transmission: Wireless Applications", by Benedetto, S. and Biglieri, E. Publisher: Springer.
- 11. Literature / books suggested by respective course Lecturers

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL4-10		TRAJEC	TORIES MO	DELLING &	SIMULATIO	ON				
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
3	0	0	3	60	40	100	3			
Objective	To provide the understanding of flight dynamics, trajectory design analysis, flight performance analysis and practical implications of trajectory planning									
Course Outcomes										
CO 1	Students w	ill be able to u	understand	the flight tra	ijectories de	sign requir	rements			
CO 2	Students w trajectories	ill be able to e	valuate and	predict the	flight perfori	mance for o	different			
CO 3	Students will be able to understand the practical implications while trajectory design									
CO 4	Students w modelling	vill be able to	o carry out	MATLAB b	ased simula	tion for tr	ajectory			

Unit I

Flight Dynamics, Flight envelope limitations. Aerodynamic sizing-equations of motion. Accuracy of simplified equations of motion, orbital mechanics

Unit II

Role of rocket propulsion in orbital trajectories and maneuvers, Maximizing missile flight performance. Benefits of flight trajectory shaping

Unit III

Flight performance prediction of boost, climb, cruise, coast, steady descent, ballistic, maneuvering, divert, and homing flight

Unit IV

Practical implementation of integrated trajectory planning, Agility in maneuvering trajectories

Unit V

Multiplier theory and its use in solving practical problems covered from a real-time computational viewpoint, No-fly zones and engineering requirements, formulation as a mathematical mixture of state and decision-variable constraints

Unit VI

Extensive MATLAB-based mini-projects

Suggested Books:

- 1. "Flight Dynamics", by Robert F. Stengel. Publisher: Princeton University Press.
- 2. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of *THIRTEEN questions*. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-EL4-11			SENSOR	TECHNOLO	OGY					
Lecture	Tutorial	Tutorial Practical Credits Major Minor Total Time Test Test (Hrs.								
3	0	0	3	60	40	100	3			
Objective		To provide learning on the basic physical principles and characteristic features in sensor technology, design, function and applications of different sensors								
		Cours	e Outcomes	•						
CO 1		vill be able to r satellites ar			principles	of sensor	systems			
CO 2		Students will be able to understand the atmospheric propagation and its impact on the performance of sensors								
CO 3	Students w process eff	ill be able to t ciency	roubleshoot	t, repair/rep	lace a faulty	sensor in (optimize			

Unit I

Physical principles underlying the sensor systems needed for satellites and tactical aircraft, as well as limitations imposed by the atmosphere and operating environment on these systems and their communication links

Unit II

Phased array and pulsed compressed radars, imaging synthetic aperture and inverse synthetic aperture radars

Unit III

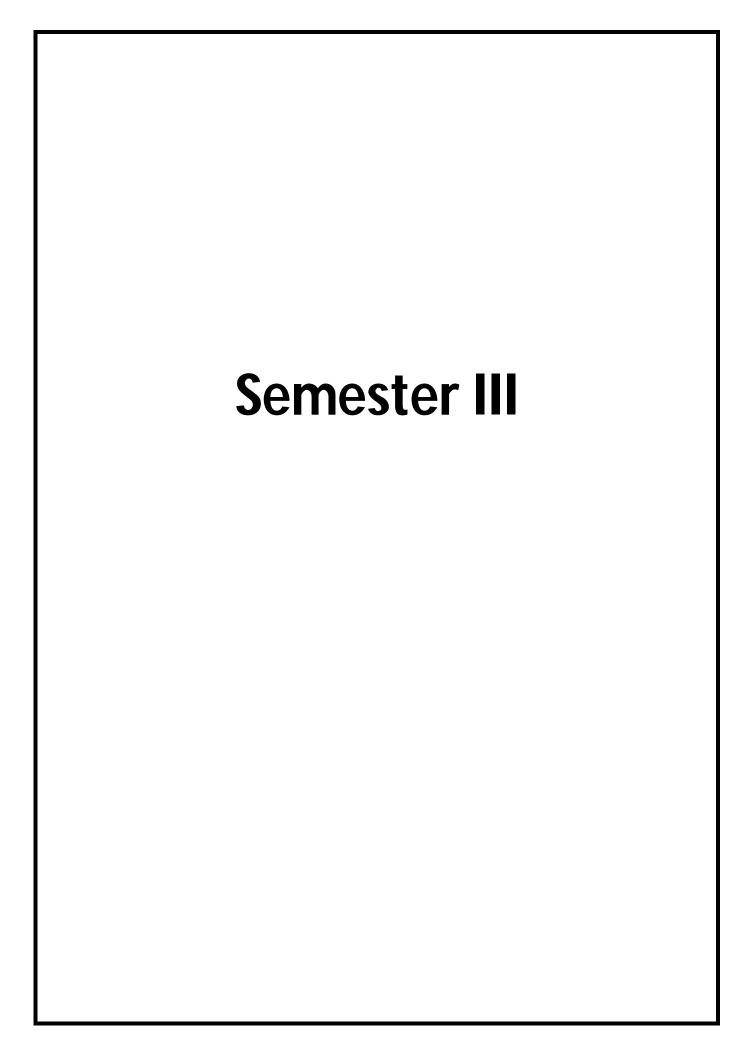
Atmospheric propagation of signal. Noise resources and thermal radiation

Unit IV

Principles of semiconductor devices. Optical and infrared imaging detector systems

Unit V

Detector resolution limitations and bandwidth requirements, Relationship between signals and noise


Unit VI

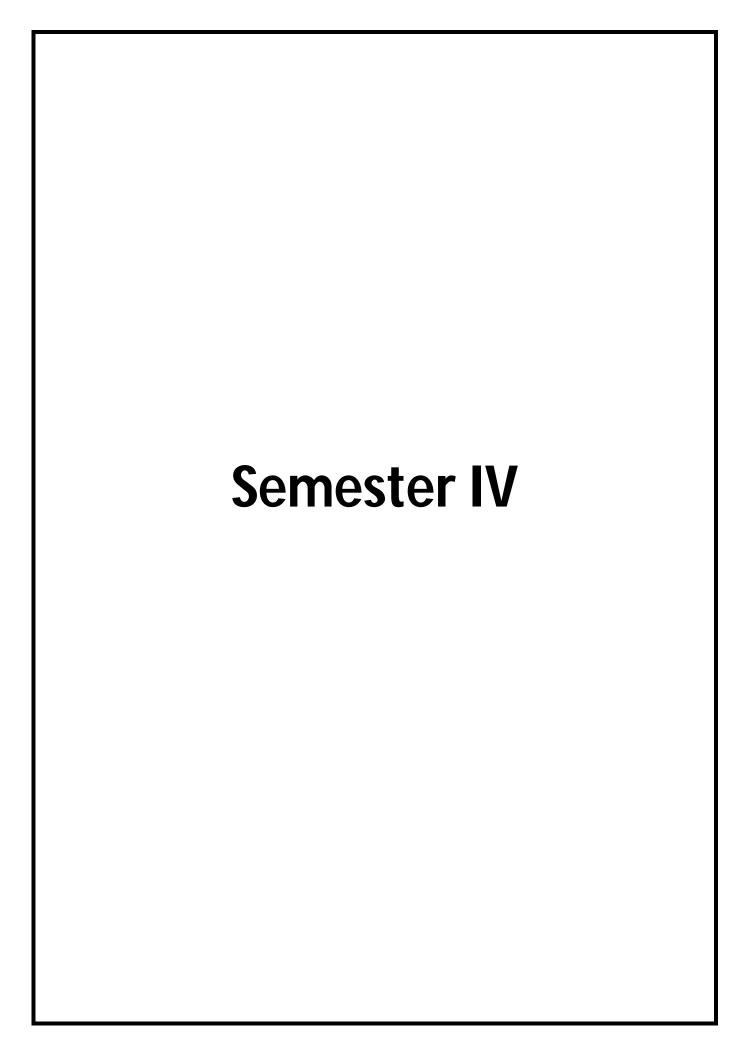
The characteristics of critical sensor functions (including detection, estimation, imaging, and tracking).

Suggested Books:

- 1. "Handbook of Modern Sensors", by Jacob Fraden. Publisher: Springer.
- 2. "Micro sensors, Principles and Applications", by J. W. Gardner. Publisher: Wiley.
- 3. "Semiconductor Sensors", by S. M. Sze. Publisher: Wiley.
- 4. Literature / books suggested by respective course Lecturers.

Note: The paper will have a total of **THIRTEEN** questions. Question No. 1, which is compulsory, shall be OBJECTIVE Type and have contents from the entire syllabus (all SIX Units). **Q. No. 1** carries 12 Marks.

DT-PDP-01		PRO.	JECT DISSEI	RTATION- I	PHASE 1						
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
0	0	20	10	00	100	100	3				
Objective	To identify the potential topics of research for dissertation phase II										
	Course Outcomes										
CO 1	Students wil	l be able to pe	erform litera	ature surve	y to identify	y the prob	lem				
CO 2	Students will formulation	Students will be able to identify the research gaps assisting them in problem formulation									
CO 3	Students will dissertation-	l be able to for -II project	mulate obje	ectives, tool	s and metho	odology to	pursue				


The objective of First stage dissertation is to identify the topic and problem for the dissertation. An exhaustive review of literature is to be done and place the problem suitably in overall realm of research arena so that exact gap is identified. The student should have clear idea of objectives, tools, and methodology for the problem in hand. The student will present at least two seminars regarding the project.

M. Tech. Project phase-I may be done in respective DRDO labs, DRDO established Centre of Excellence, DIAT Pune, PSUs and private defence industries. As regard M.Tech dissertation based upon the topic of dissertation, the respective students will be placed appropriately to the various respective labs located all over countries.

DT-PDP-01		SEMINAR/INDUSTRIAL TRAINING										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)					
0	0	8	4	00	100	100	3					
Objective	To expose students to the 'real' working environment of defence sector and get them acquainted with the organization structure, industrial operations and administrative functions Course Outcomes											
CO 1	Students will be able to demonstrate the knowledge gain through cutting-edge technology related with defence sector											
CO 2	Students will able to reinfo					ice industr	ies and					

Industrial Training may be done in respective DRDO labs, DRDO established Centre of Excellence, DIAT Pune, PSUs and private defence industries.

The candidate has to submit a training report of his/her work/project/assignment completed in the industry during the training period. The evaluation will be made on the basis of submitted training report and viva-voce/presentation.

DT-PDP-02		PRO	JECT DISSE	RTATION- I	PHASE 2					
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)			
0	0	40	20	200	100	300	3			
Objective	The main objective of the course is to make the students able to do some good research in the field of their interests related to defence sector or interrelated fields of applications Course Outcomes									
CO 1	Students will be able to conduct investigations of engineering problems using research-based knowledge and experimental/research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.									
CO 2	Students will techniques w					neering to	ols and			
CO 3	Students wil industrial en		either wor	k in a rese	earch envir	onment o	r in an			
CO 4	Students will responsibilit					rofessional	l ethics,			
CO 5	Students will engineering		present an	d convince	their topi	c of study	to the			

M. Tech. Project phase-II may be done in respective DRDO labs, DRDO established Centre of Excellence, DIAT Pune, PSUs and private defence industries. As regard M.Tech dissertation based upon the topic of dissertation, the respective students will be placed appropriately to the various respective labs located all over countries.

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of defence sector or other related fields which have been finalized in the third semester. They would be working under the supervision of a DRDO Scientist/faculty member. The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work as per academic calendar. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor. The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. The dissertation should be presented in standard format as provided by the department. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co- supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor